數(shù)學(xué)(江西卷)-2025年中考考前預(yù)測卷(全解全析)_第1頁
數(shù)學(xué)(江西卷)-2025年中考考前預(yù)測卷(全解全析)_第2頁
數(shù)學(xué)(江西卷)-2025年中考考前預(yù)測卷(全解全析)_第3頁
數(shù)學(xué)(江西卷)-2025年中考考前預(yù)測卷(全解全析)_第4頁
數(shù)學(xué)(江西卷)-2025年中考考前預(yù)測卷(全解全析)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025年中考考前最后一卷(江西卷)

數(shù)學(xué)

第I卷

一、選擇題(本大題共6個小題,每小題3分,共18分.在每個小題給出的四個選項中,只有一項符合題

目要求,請選出并在答題卡上將該項涂黑)

1.下列各數(shù)是負(fù)數(shù)的是()

A.0B.2C.|-0.2|D.--

【答案】D

【分析】本題主要考查了正負(fù)數(shù)的定義,根據(jù)正負(fù)數(shù)的定義求解即可.

【詳解】解:A.0既不是正數(shù)也不是負(fù)數(shù),故該選項不符合題意;

B.2是正數(shù),故該選項不符合題意;

C.|-0.2|=0.2,0.2是正數(shù),故該選項不符合題意;

D.-g是負(fù)數(shù),故該選項符合題意;

故選:D.

2.下列運(yùn)算正確的是()

A.(X,)=x5B.(―%2y3)=-x6y3C.%-24-x4=x2D.x2-x4=x6

【答案】D

【分析】根據(jù)同底數(shù)塞的乘法,幕的乘方,積的乘方,同底數(shù)幕的除法運(yùn)算法則逐一計算判斷即可.

【詳解】解:???(/)2=苫6,錯誤,

故A不合題意.

V(-x2y3)3=-x6y9,錯誤,

AB不合題意.

尸+兀4=%—6=,錯誤,

X

.'.C不合題意.

???X2.3=/6,正確,

???D合題意.

故選:D.

【點睛】本題考查了同底數(shù)幕的乘法,幕的乘方,積的乘方,同底數(shù)累的除法,熟練掌握公式和運(yùn)算的法

則是解題的關(guān)鍵.

3.下列四個城市地鐵標(biāo)志中,是中心對稱圖形的是()

A?口?。⑥

【答案】D

【分析】本題主要考查了中心對稱圖形的定義,根據(jù)中心對稱圖形的定義進(jìn)行逐一判斷即可:把一個圖形

繞著某一個點旋轉(zhuǎn)180。,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這

個點就是它的對稱中心.

【詳解】解:A.不是中心對稱圖形,故此選項不符合題意;

B.不是中心對稱圖形,故此選項不符合題意;

C.不是中心對稱圖形,故此選項不符合題意;

D.是中心對稱圖形,故此選項符合題意;

故選:D.

4.已知加,”是一元二次方程2-+5x-7=0的兩個根,則的值為()

A.1B.6C.-1D.—6

【答案】C

【分析】本題考查了一元二次方程根與系數(shù)的關(guān)系,代數(shù)式求值.解題的關(guān)鍵在于對知識的熟練掌握與靈

活運(yùn)用.由加,〃是一元二次方程2d+5x-7=0的兩個實數(shù)根,可得〃,+〃=-:5,"姑=-57,然后代入求

值即可.

【詳解】解:???〃?,“是一元二次方程無2+5》-7=0的兩個實數(shù)根,

.57

..m+n=——,mn=——

22

/.mn-m-n=mn-^m+n)=---I--I=-1,

故選:C.

5.如圖,在菱形ABC。中,AB=4,4B=60。,點E是BC的中點,以C為圓心,CE為半徑作弧,交CD

于點E連接AE、AF.EF,則陰影部分的面積為()

A-56TB-5^+TC-3也TD-36T

【答案】A

【分析】連接AC,根據(jù)菱形的性質(zhì)求出/BCD和3c=AB=4,根據(jù)勾股定理求出鉆=-2?=26,

AF=273,根據(jù)菱形性質(zhì)求出?BCD180。-?8120°,根據(jù)勾股定理求出OE=JCE?-CO。=6,得出

EF=2OE=26根據(jù)5=5,.+5』k-5弓形=2相+2有一子+石=5月一?求出結(jié)果即可.

【詳解】解:如圖:連接AC,

???四邊形ABC。是菱形,

AB=BC=A,AB//CD,NACB=NACD=工NBCD,

2

,?4=60。,

...VABC為等邊三角形,

為BC的中點,

CE=BE——BC—2—CF,AE±BC,

由勾股定理得:AE=V42-22=25/3>

同理可得:AF=26,

ZB=60°,AB//CD,

?BCD1800-?B120°,

ZACB=ZACD=-/BCD=60°,

2

CE=CF=2,

ACO.LEF,EO=-EF,

2

:./COE=90。,

???NCEO=90°-60°=30°,

???CO=-CE=1,

2

???OE=y]CE2-CO2=73,

EF=2OE=2』,

?,S弓形二S扇形。所—S^cEF

=—2小

3602

占-5

3

=

S&AFC^&AEC=—x2x2>/3=2A/3,

???陰影部分的面積:

S=;AEC+S,FC—S弓形=2g+2g—子+G=5百一與

故選:A.

【點睛】本題主要考查了等邊三角形的性質(zhì)和判定、菱形的性質(zhì)、扇形的面積計算,勾股定理,等知識點,

求得AAECAAFC和扇形ECT的面積是解題的關(guān)鍵.

6.二次函數(shù)>="2+桁+,的圖象如圖所示,則下列說法不正確的是()

A.對稱軸為直線x=lB.y的最小值為t

C.x=-2對應(yīng)的函數(shù)值為>=5D.當(dāng)0<x<2時,貝!|-4<y<-2

【答案】D

【分析】本題考查了二次函數(shù)圖象的性質(zhì),理解圖示,掌握二次函數(shù)圖象的性質(zhì)是關(guān)鍵.

根據(jù)二次函數(shù)與坐標(biāo)軸的交點,對稱軸直線的計算判定A選項;運(yùn)用待定系數(shù)法得到解析式,將一般式化

為頂點式可判定B選項;根據(jù)自變量值求函數(shù)值可判定C選項;根據(jù)最值的計算可判定D選項;由此即可

求解.

【詳解】解:二次函數(shù)與X軸的兩個交點為-1,3,

對稱軸直線為x=—尸=1,故A選項正確,不符合題意;

根據(jù)題意,二次函數(shù)經(jīng)過(T0),(3,0),(0,-3),

a-b+c=0

.\<9a+3b+c=0f

c=-3

a=l

解得,卜=-2,

c=-3

;?二次函數(shù)解析式為y=尤?一2無一3=(X-1)2-4,

.??y的最小值為T,故B選項正確,不符合題意;

當(dāng)彳=-2時,y=(-2-1)2-4=5,故C選項正確,不符合題意;

當(dāng)x=0時,y=-3,當(dāng)x=l時,y=-4,當(dāng)x=2時,、=-3,

.?.當(dāng)0<x<2時,則-4Vy<-3,故D選項錯誤,符合題意;

故選:D.

第n卷

二、填空題(本大題有6個小題,每小題3分,共18分)

7.若代數(shù)式布下在實數(shù)范圍內(nèi)有意義,則。的取值范圍是.

【答案】a<l

【分析】本題考查了二次根式有意義的條件,二次根式有意義的條件是被開方數(shù)是非負(fù)數(shù),根據(jù)二次根式

有意義的條件可得:解不等式可得。的取值范圍.

【詳解】解:?.?代數(shù)式"工在實數(shù)范圍內(nèi)有意義,

二.1—a20,

解得:a<l.

故答案為:a<l.

8.數(shù)據(jù)顯示,自2025年1月10日正式發(fā)布至2025年1月26日,DeepSeek的全球下載量已突破1600萬

次,這無疑是AI應(yīng)用市場上的一次巨大成功.數(shù)據(jù)1600萬用科學(xué)記數(shù)法表示為.

【答案】1.6xlO7

【分析】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為4X10"的形式,其中1<忖<10,n

為整數(shù).確定”的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,〃的絕對值與小數(shù)點移動的位數(shù)相同;

據(jù)此即可求解.

【詳解】解:1600萬=16000000=1.6x107.

故答案為:1.6x107.

9.如圖,直線矩形A2CD的頂點A在直線b上,若4=38。,則/2的度數(shù)為.

【答案】52°

【分析】本題考查了平行線的性質(zhì)、矩形的性質(zhì)、三角形外角的定義及性質(zhì),延長CB交6于點E,由矩形

的性質(zhì)結(jié)合三角形外角的定義及性質(zhì)得出N3=52。,再由平行線的性質(zhì)即可得解.

【詳解】解:如圖,延長CB交6于點E,

???四邊形ABC£>為矩形,

ZAfiC=90。,

VZABC=Zl+ZAEB=90°,Zl=38°,

/.ZAEB=52°,

???直線?!╞,

Z2=ZAEB=52°,

故答案為:52°.

10.鄉(xiāng)村振興,交通先行.近年來,某縣高質(zhì)量推進(jìn)“四好”農(nóng)村公路建設(shè),著力打通農(nóng)村交通基礎(chǔ)設(shè)施.該

縣準(zhǔn)備修一條道路,在修建600米后,剩下的4800米道路采用新的修建技術(shù),每天修建的長度是原來的2

倍,結(jié)果共用15天完成了全部任務(wù).設(shè)原來每天修建道路九米,則根據(jù)題意可列方程:

a6004800口

【答案】——+--=15

x2x

【分析】本題考查了列分式方程,根據(jù)題意找出等量關(guān)系是解題的關(guān)鍵.設(shè)原來每天修建道路1米,則采用

新的修建技術(shù)后每天修建道路2x米,根據(jù)題意列出分式方程即可.

【詳解】設(shè)原來每天修建道路x米,則采用新的修建技術(shù)后每天修建道路2x米,

6004800?

根據(jù)題意得:——+-------=15,

x2x

60048001「

故答案為:——+------=15.

xlx

11.《墨子?天文志》記載:“執(zhí)規(guī)矩,以度天下之方圓.”度方知圓,感悟數(shù)學(xué)之美.如圖,正方形AB。的

面積為18,以它的對角線的交點為位似中心,作它的位似圖形EFG8,若AB:EF=3:2,則四邊形EFGH

的外接圓的半徑為

【答案】2

【分析】此題考查了位似圖形的性質(zhì)、正多邊形與圓等,解直角三角形等知識,連接加、AC,根據(jù)相似三

角形的性質(zhì)得到正方形ABCD與正方形SFG8的面積比為9:4,確定正方形EFGH的面積為8,得到正方形

EFGH的邊長為20,利用等腰直角三角形的性質(zhì)求解即可.

【詳解】解:連接8nAC,如圖所示:

,/正方形項8與正方形EFGH是位似圖形,AB:EF=3:2,

/.正方形ABCD與正方形EFGH的面積比為9:4,

,正方形ABCD面積為18,

二正方形EFG"的面積為8,

正方形EFGH的邊長為2啦,

,:四邊形EFGH是正方形,

ZEOF=90°,OE=OF,

5

EO=—x2y/2=2,

2

四邊形EFG”的外接圓的半徑為2,

故答案為:2.

12.如圖,在RSABC中,/。=90。,/4=30。,8。=2,0是斜邊相的中點,現(xiàn)將點B繞著點。按逆時針方

向旋轉(zhuǎn)£(0°</4180。)角度得到點。,若點。落在VABC中位線所在直線上,則點。到48的距離

為.

【答案】1或6或g

【分析】本題考查了直角三角形的性質(zhì),三角形中位線的性質(zhì),勾股定理,解直角三角形,取BC中點E,

AC中點產(chǎn),過點。作。GLAB于點G,連接0D,根據(jù)題意,分。點在直線0E上,。點在直線0P上,

。點在直線即上,三種種情況討論,畫出示意圖,利用含30度角的直角三角形的性質(zhì)結(jié)合中位線的性質(zhì)

求解即可.

【詳解】解:如圖,取8C中點E,AC中點/,過點。作OGLAB于點G,連接OD,

.點。是斜邊的中點,

。及。尸,E尸都是VABC的中位線,

OE\\AC,OF||BC,EF\\AB,OE=^AC,OF=|BC,EF=;AB,

,/在RIAABC中,NC=90。,ZA=30。,BC=2,O是斜邊AB的中點,

AB=2BC=4,

?*-AC=y/AB2-BC2=2A/3>

?*.OE=?OF=1,EF=2,

由旋轉(zhuǎn)的性質(zhì)得:OD=OB=2,

:.DG=ODsinZBOD=2x-=1;

2

當(dāng)和。點在直線OP上時,

VZA5C=90°-ZA=60°,BC\\OD,

:.ZBOD=180°-ZABC=120°,

ZAOD=60°,

DG=ODsinZAOD=2x—=y/3;

2

當(dāng)。點在直線成上時,過點B作FHLAB于點",

則=(平行線間距離相等),

-AOFH=-AFOF,

22

.AFOF&173

..FH=---------=-----=——;

OA22

綜上,點。落在VABC中位線所在直線上,則點。到A3的距離為1或6或且,

2

故答案為:1或月或無.

2

三、(本大題共5小題,每小題6分,共30分,解答應(yīng)寫出文字說明、證明過程或演算步理)

13.(1)計算:VT2-Qj+|V3-2|+V3tan60°.

(2)如圖,在VABC中,NB=NC,D,E分別是AB,3C的中點,連接OE,求證:AB=2DE.

【答案】(1)6+3;(2)見解析

【分析】此題考查了實數(shù)的混合運(yùn)算、三角形中位線定理、等角對等邊等知識,熟練實數(shù)的運(yùn)算法則和三

角形中位線定理是解題的關(guān)鍵.

(1)利用算術(shù)平方根、負(fù)整數(shù)指數(shù)幕、實數(shù)的絕對值、特殊角的三角函數(shù)值進(jìn)行計算后,再進(jìn)行加減法計

算即可;

(2)禾?。萦萌切沃形痪€定理得到AC=2DE,由等角對等邊得到AB=AC,即可得到結(jié)論.

【詳解】(1)解:A/12-JII+|V3-2|+V3tan60°

=2A/3-2+2-^+A/3XV3

=2A/3-2+2->/3+3

=6+3;

(2)證明::£),E分別是AB,8C的中點,

OE是VA2C的中位線,

DE=-AC,

2

JAC=2DE,

ZB=NC,

JAB=AC,

:.AB=2DE.

14.先化簡"+L<]."4:+4,再從—2,1,2中選取一個適合的數(shù)代入求值.

<a—1ya—1

a—2

【答案】y,當(dāng)。=2時,原式=。

【分析】本題主要考查了分式的化簡求值,先把小括號內(nèi)的式子通分化簡,再把除法變成乘法后約分化簡,

最后根據(jù)分式有意義的條件確定a的值并代值計算即可得到答案.

■、斗左刀.ATJ(13)“2+4。+4

【詳解】解:。+1------7--------:—

Va-lja-\

/—1—3a2+4〃+4

a—1ci—1

_<22-4(4+2)2

a—1a—1

+2)ci—1

(Q+2/

a—2

Q+2

???分式要有意義,

.Ja-1/O

]a+2/0

/.a片1且aw—2,

2-2

...當(dāng)。=2時,原式=7;--=0.

2+2

15.2025年3月9日上午8:30,2025南昌象湖半程馬拉松開始啦!跑友齊聚“英雄城”,在復(fù)興大道中激情

開跑,除了努力奔跑的參賽選手,賽場外還有一群默默奉獻(xiàn)的志愿者身影.大學(xué)生小宇和小杰報名參加賽

會志愿者活動,兩人分別從以下四項志愿者活動中隨機(jī)選擇一項(假設(shè)選擇每一項的可能性相同):A.賽

道指引;B.集結(jié)檢錄;C.物資發(fā)放;D.人群疏散.

⑴“小杰選擇E.號碼布發(fā)放”是事件.(填“必然”“不可能”或“隨機(jī)”)

(2)請用畫樹狀圖或列表的方法,求兩人恰好選擇同一項志愿者活動的概率.

【答案】(1)不可能

*

【分析】本題考查列表法與樹狀圖法,事件的分類,熟練掌握列表法與樹狀圖法是解答本題的關(guān)鍵.

(1)根據(jù)不可能事件的定義可得答案.

(2)畫樹狀圖可得出所有等可能的結(jié)果數(shù)以及小宇和小杰恰好選擇同一項志愿者活動的結(jié)果數(shù),再利用概

率公式可得出答案.

【詳解】(1)解:由題意知,“小杰選擇£.號碼布發(fā)放”是不可能事件.

故答案為:不可能;

(2)解:根據(jù)題意,畫樹狀圖如下:

開始

ABCD

ABCDABCDABCDABCD

共有16種等可能的結(jié)果,其中小宇和小杰恰好選擇同一項志愿者活動的結(jié)果有4種,

41

???小宇和小杰恰好選擇同一項志愿者活動的概率為1r-

16.圖①,圖②均是7x6的正方形網(wǎng)格,VABC的頂點均在格點上.在圖①,圖②中,只用無刻度的直尺,

在給定的網(wǎng)格中按要求畫圖,不要求寫出畫法,保留作圖痕跡.

①②

(1)在圖①中畫出線段EF,使所垂直平分2C,且點E,尸均在格點上.

2

(2)在圖②中VABC的邊AC上找到一點P,連結(jié)3P,使%枷

【答案】(1)見詳解

(2)見詳解

【分析】本題考查利用網(wǎng)格作圖,作垂直平分線以及根據(jù)三角形的面積作圖.

(1)根據(jù)菱形得性質(zhì),利用網(wǎng)格尋找使3尸=仃=。£=砥的格點,連接ED即可滿足所垂直平分2c.

(2)由題意可知,當(dāng)=時即可滿足條件,尸需要是AC的三等分點,利用網(wǎng)格繪制三條相等的

平行線,最下面的平行線與AC的交點即為點P.

【詳解】(1)解:如下圖EE即為所求:

2

(2)由題息可知,=§“ABC,

當(dāng)AP=弓AC時即可滿足條件.

,尸需要是AC的三等分點,

如下圖,繪制三條相等的平行線,最下面的平行線與AC的交點即為點P.

17.2025年是全面落實全國科技大會精神、加快建設(shè)科技強(qiáng)國的關(guān)鍵之年,人工智能。eepSe"的崛起無疑

成為了全球科技界的焦點.某公司嘗試?yán)谩epSe"智能技術(shù)優(yōu)化生產(chǎn)流程,提高生產(chǎn)效率.在生產(chǎn)一種

產(chǎn)品時,發(fā)現(xiàn)生產(chǎn)成本y(單位:元)與產(chǎn)品數(shù)量x(單位:件)之間存在一次函數(shù)關(guān)系,其幾組對應(yīng)值如

下表所示.

產(chǎn)品數(shù)量無/件10121620

生產(chǎn)成本y/元400420460500

請你根據(jù)表中信息,解答下列問題.

(1)求y與x之間的函數(shù)關(guān)系式.

(2)若這種產(chǎn)品每件的售價為20元,則當(dāng)生產(chǎn)成本為1000元時,所生產(chǎn)產(chǎn)品的總售價為多少元?

【答案】元+300

(2)當(dāng)生產(chǎn)成本為1000元時,所生產(chǎn)的產(chǎn)品總售價為1400元

【分析】本題主要考查了一次函數(shù)的實際應(yīng)用,正確求出對應(yīng)的函數(shù)關(guān)系式是解題的關(guān)鍵.

(1)設(shè)出函數(shù)解析式,利用待定系數(shù)法求解即可;

(2)把y=1000代入(1)所求函數(shù)關(guān)系式中求出x的值即可得到答案.

【詳解】(1)解:設(shè)丁=丘+6,

400=10左+6

把(10,400),(20,500)代入了=履+6中得

500=20k+b

k=W

解得

6=300

???v與x之間的函數(shù)關(guān)系式為y=i。尤+3。。.

(2)解:在y=10x+3。。中,令y=1000,得1000=10尤+300,

解得x=70.

?,?70x20=1400(元),

???當(dāng)生產(chǎn)成本為1000元時,所生產(chǎn)的產(chǎn)品總售價為1400元.

四、(本大題共3小題,每小題8分,共24分,解答應(yīng)寫出文字說明、證明過程或演算步理)

18.綜合與實踐:為了提高學(xué)生的防溺水意識,某校舉行了“珍愛生命,遠(yuǎn)離溺水”安全知識競賽,并對收集

到的數(shù)據(jù)進(jìn)行了整理、描述和分析.

【收集數(shù)據(jù)】隨機(jī)抽取部分學(xué)生的競賽成績(滿分100分,所有競賽成績均不低于60分)組成一個樣本.

【整理數(shù)據(jù)】將學(xué)生競賽成績的樣本數(shù)據(jù)分成A,B,C,。四組進(jìn)行整理,如下表.

組別ABCD

成績X/分60<x<7070<x<8080<x<9090<x<100

人數(shù)8m12n

【描述數(shù)據(jù)】根據(jù)競賽成績繪制了如下兩幅不完整的統(tǒng)計圖.

其中C組具體成績的樣本數(shù)據(jù)分別為80,80,82,84,84,85,85,85,86,86,88,89.

【分析數(shù)據(jù)】根據(jù)以上信息,解答下列問題.

(1)填空:m=,n=.補(bǔ)全條形統(tǒng)計圖.

(2)C組成績的樣本數(shù)據(jù)的眾數(shù)是,樣本數(shù)據(jù)的中位數(shù)是.

(3)若競賽成績85分以上(含85分)為優(yōu)秀,請你估計該校參加競賽的1000名學(xué)生中成績?yōu)閮?yōu)秀的人數(shù).

【答案】(1)14;16,圖見解析.

(2)85;83.

(3)估計該校參加競賽的1000名學(xué)生中成績?yōu)閮?yōu)秀的人數(shù)為460.

【分析】(1)由條形統(tǒng)計圖和扇形統(tǒng)計圖信息關(guān)聯(lián),計算出抽取的學(xué)生人數(shù)以及優(yōu)、〃的值;

(2)根據(jù)眾數(shù)、中位數(shù)定義求解即可;

(3)根據(jù)題意,用樣本估計整體進(jìn)行計算即可.

【詳解】(1)解:由題意得,共抽取學(xué)生12+24%=50人,

,3組人數(shù)為50x28%=14人,

。組人數(shù)為50-8-14-12=16人,

即m-14,n-16,

補(bǔ)全條形統(tǒng)計圖如下:

1人數(shù)

10-----■一■一

8--—----

[1111[

ABCD組別

故答案為:14;16.

(2)解:組數(shù)據(jù)中85出現(xiàn)的次數(shù)最多,

-.C組成績的樣本數(shù)據(jù)的眾數(shù)是85,

,??共抽取學(xué)生50人,即樣本數(shù)據(jù)共50個,取中間兩個數(shù)據(jù)的平均數(shù)為這組數(shù)據(jù)的中位數(shù),

應(yīng)取樣本數(shù)據(jù)從小到大排列后的第25、26個數(shù)據(jù)計算平均數(shù),

又A組8人,3組14人,C組12人,

.,.第25、26個數(shù)據(jù)分別是82,84,

中位數(shù)是配黃=83,

故答案為:85;83.

(3)解:所抽取學(xué)生中成績?yōu)閮?yōu)秀的概率是、一xl00%=46%,

???該校參加競賽的1000名學(xué)生中成績?yōu)閮?yōu)秀的人數(shù)為1000x46%=460人.

【點睛】本題考查的知識點是條形統(tǒng)計圖和扇形統(tǒng)計圖信息關(guān)聯(lián)、求眾數(shù)、求中位數(shù)、由樣本所占百分比

估計總體的數(shù)量,解題關(guān)鍵是熟練掌握由樣本所占百分比估計總體的數(shù)量.

19.臂架泵車(如圖1)是一種用于建筑工程中混凝土輸送和澆筑的特種工程車輛,集混凝土泵送、臂架伸

展和移動功能于一體,廣泛應(yīng)用于高層建筑、橋梁、隧道等施工場景.圖2是其輸送原理平面圖,進(jìn)料口A

到建筑樓的水平距離為24米,到地面的垂直距離為2米,AB,BC,CD,DE為輸送臂,可繞A,B,C,

。旋轉(zhuǎn),已知輸送臂48垂直地面且=14米,BC=CD=13^,DE=1米,ZBCD=134.8°,ZCDE=112.6°

D

圖1

(1)8。的長約為;(直接寫出答案)

⑵求出料口到地面的距離.

(參考數(shù)據(jù):sin67.4°,cos67.4°?,sin56.3°,cos56.3°?—)

13135020

【答案】⑴24;

(2)23米

【分析】本題主要考查了解直角三角形、勾股定理,解決本題的關(guān)鍵是作輔助線構(gòu)造直角三角形.

⑴過點C作利用銳角三角函數(shù)可得BM=12,根據(jù)等腰三角形的性質(zhì)可得3D=2BM=24米;

(2)過點8作砂,垂足為P,利用勾股定理可以求出30=24米,根據(jù)進(jìn)料口A到建筑樓的水平距離

為24米,可得3尸=24米,根據(jù)HL可證RUEZ汨絲RtJP3,根據(jù)全等三角形的性質(zhì)可得進(jìn)料口到地面的距

離為所+16=7+16=23(米).

【詳解】(1)解:如下圖所示,過點C作。如,

/BCD=134.8°,CB=CD,

ZBCM=1x134.8°=67.4°,BM=DM,

2

BM=BCsinZBCM=BCsin67.4°?13x—=12,

13

.?.5£>=2BM=24(米),

(2)解:如下圖所示,過點,B作BPLEP,垂足為尸,

在RUBDE中,

?;DE=1米,

BE=』BD。+DE。=7242+72=25米,

?.加=24米,

:.BP=BD,

D

RtAEDB^RtAEPB,

:.DE=PE,

.?.£到地面的距離為抨+16=7+16=23(米),

到地面的距離為23米.

k

20.如圖,在平面直角坐標(biāo)系中,點C,。都在反比例函數(shù)y=1(1>0)的圖象上,CE_Lx軸于點E,DBLx

軸于點B,OC與BD的延長線相交于點A.

A

⑴若△OCE的面積為6.

①求反比例函數(shù)的表達(dá)式.

②當(dāng)時,求自變量x的取值范圍.

4

(2)已知CE=4,8。=耳,求AB的長.

【答案】⑴①y=T(x>0);?x>3

⑵12

【分析】本題考查了反比例函數(shù)的應(yīng)用、相似三角形的判定與性質(zhì)等知識,熟練掌握反比例函數(shù)的圖象與

性質(zhì)是解題關(guān)鍵.

(1)①設(shè)點C的坐標(biāo)為C(a,A)(a>0,6>0),根據(jù)三角形的面積公式可得m=12,再將點C(a,。)代入反比

例函數(shù)的解析式即可得;

②先求出當(dāng),=4時,x的值,再根據(jù)結(jié)合函數(shù)圖象即可得;

(2)先得出Q0,再求出ct,。。件,力,則OE=與,OB=當(dāng),然后證出AORSAOCE,根據(jù)相

似三角形的性質(zhì)求解即可得.

【詳解】(1)解:①由題意,設(shè)點C的坐標(biāo)為C(a,b)(a>0,>>0),

:小,了軸于點£,

OE=a,CE=b,

???/XOCE的面積為6,

:.-OECE=-ab=6,

22

ab=12,

?.?點C在反比例函數(shù)y=:(x>0)的圖象上,

k=ab=12,

???反比例函數(shù)的表達(dá)式為y=—(%>0).

X

12

②當(dāng)y=4時,x=—=3,

4

12、

???反比例函數(shù)y=—(%>0)中的12>0,x>0,

X

???函數(shù)的圖象位于第一象限,且在第一象限內(nèi),y隨x的增大而減小,

...當(dāng)y44時,x>3.

(2)解:?..反比例函數(shù)y=,x>o)的圖象位于第一象限,

X

k>b,

“4

:點C,。都在反比例函數(shù)y=9x>0)的圖象上,CEJLx軸于點E,無軸于點3,CE=4,BD=^,

x3

<4D

OE=~,0B=—

44

又??,CE,x軸于點E,軸于點5,

:.CE//DB,

△OAB^^OCE,

濯嘿,即詈13,

/.AB=12.

五、(本大題共2小題,每小題9分,共18分,解答應(yīng)寫出文字說明、證明過程或演算步理)

21.如圖1,在VABC中,4c=45。,以48為直徑作0。交AC于點D,且AD=CD.

⑴求證:8C是。。的切線;

(2)如圖2,在。。上取一點E,連接AE,BE,DE.若BE=也,AD=45.

①求AE的長;

②求VAZ)E的面積.

【答案】(1)見解析

⑵①20;②3

【分析】本題考查了圓的幾何性質(zhì)、切線的判定定理、勾股定理和三角形面積計算公式,熟練掌握是解題

的關(guān)鍵.

(1)即證明AB_L3C,方法一:連接80,則得80為AC的垂直平分線,BA=BC,根據(jù)等腰

三角形性質(zhì)可得/BC4=/54C=45。,.?.ZABC=180。一/BC4—/B4C=90°,即筋,5c.方法二:連接09,

貝UQ4=Or),ZAOD=180°-ZADO-ZBAC=90°,再證明OD為VABC的中位線,得OD〃BC,即可得證.

(2)①先求出的長,因為A8為直徑,所以是直角三角形,根據(jù)勾股定理即可求出AE的長;②

過點A作AF1DE與點尸,根據(jù)圓周角性質(zhì)得NA£?=NABD=45。,易得AF=EF=徨AE,再根據(jù)勾股定

2

理求出DE,得AF、OE的長,即可求出VADE的面積.

【詳解】(1)解:方法一:連接

?.?鉆是。。的直徑,??.NAD3=90。.

???AD=CD,為AC的垂直平分線.

:.BA=BC,ZBCA=ABAC=45°,

ZABC=180°-ZBCA-ABAC=90°,即AB_L3C.

又Q05為0。的半徑,.〔BC是。。的切線.

方法二:連接OD.

■.■OA=OD,ZADO^ZBAC^45°.

ZAOD=180°-ZADO-ABAC=90°.

又?;OA=OB,AD=CD,

為VABC的中位線.

:.OD//BC,..ZABC=ZAOD=90°,即AB_LBC.

又Q03為。。的半徑,.?.3C是。。的切線.

(2)解:①方法一:,在RtZkABD中,ZBAC=45°,

VcosZBAC=—,則A8=———=昌變=①

ABcosZBAC2

?.?川是。。的直徑,,44£?=90。.

?在RtAABE中,AB=M,BE=e,

AE=y/AB2-BE2=>/10-2=272?

方法二:?.?在RSAO。中,/朋C=45°,

nA

???cosZBAC=——,

AD

:.OA=ADcosZBAC=y/5x—=—,

22

AB=2OA=yf\0,

,.?鉆是。。的直徑,,44£3=90。.

在RtZXABE中,AB=y/10,BE=①,

AE=>jAB2-BE1=A/10-2=2A/2?

②過點A作AF1DE與點F.

???ZABD=90°-ABAC=45°,

又?.AO=AQ,.\ZAED=ZABD=45°,

AF=AEsinZAED=2y/2x—=1,

2

在RtAAFE和RtAAED中,

EF=A/A£2-AF2=2>DF=AD2-AF2=1-

DE=EF+DF=2+1=3.

.?.VADE的面積為:-D£xAF=-x3x2=3.

22

;.VADE的面積為3.

22.小波在復(fù)習(xí)時,遇到一個課本上的問題,溫故后進(jìn)行了操作、推理與拓展.

(1)溫故:如圖1,在VABC中,ADI3c于點。,正方形PQWN的邊在2C上,頂點尸,N分別在AB,

AC上,若BC=6,AD=4,求正方形尸。腦V的邊長.

操作:能畫出這類正方形嗎?小波按數(shù)學(xué)家波利亞在《怎樣解題》中的方法進(jìn)行操作:如圖2,任意畫7ABC,

在A5上任取一點P,畫正方形PQW,使0,AT在3c邊上,V在VABC內(nèi),連結(jié)3N'并延長交AC

于點N,畫MW,8c于點M,NPLNM交AB于點、P,2。_18(7于點。,得到四邊形PQWM小波把線段

3N稱為“波利亞線”.

(2)推理:證明圖2中的四邊形PQMN是正方形.

3

拓展:在(2)的條件下,在射線BN上截取NE=7W,連結(jié)EQ,(如圖3).當(dāng)tan/NBM=—時,猜想ZQEM

4

的度數(shù),并嘗試證明.

請幫助小波解決“溫故”、“推理”、“拓展”中的問題.

12

【答案】(1)溫故:y

(2)推理:詳見解析;拓展:ZQEM=90°,詳見解析

【分析】本題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì)、正切的應(yīng)用等知識點,掌握相關(guān)幾何結(jié)論

是解題關(guān)鍵.

(1)證AAPNSVABC即可求解;

(2)推理:由題意得四邊形PAM2是矩形,可證即可求解;拓展:設(shè)施V=33

BM=4k,則3N=5Z:,BQ=k,BE=2k,可得或=變,進(jìn)一步證ABQES△班“即可;

BEBM

【詳解】(1)解:如圖1中,

\-PN\\BCf

:.△APNsNABC,

PNAEPN4-PN

——,即Rn——=------

BCAD64

12

解得PN=M

(2)解:能畫出這樣的正方形,如圖2中,正方形PNMQ即為所求.

推理:證明:如圖2中,

由畫圖可知:/QMN=/PQM=/NPQ=/BMN=90°,

???四邊形尸NMQ是矩形,

s*NM,

M'N'_BN

MN-

P'N'BN'

同理可得:

PN一嬴

.M'N'_PN'

…MN-PN'

?.?MN=P'N',

:.MN=PN,

,四邊形PQWN是正方形.

拓展:如圖3中,結(jié)論:NQEM=90。.

MN3

理由:由tanNM5M=——=—,可以彳發(fā)設(shè)MV=3左,BM=4k,貝lj5N=5左,BQ=k,BE=2k,

BM4

,BQ_k_1BE2k_1

,^E~2k~2f血一莪-5'

BQBE

一拓一前’

???ZQBE=ZEBM,

?.△BQEsABEM,

ZBEQ=ZBME,

?.?NE=NM,

:.ZNEM=ANME,

?:/BME+NNME=9伊,

ZBEQ+ZNEM=90°f

ZQEM=90°,

六、(本大題共12分,解答應(yīng)寫出文字說明、證明過程或演算步理)

23.如圖1,已知拋物線弓:y=。/+法+3與工軸交于點4(-1,0)和點3(3,0),與V軸交于點C.

圖1

(1)求拋物線的解析式;

(2)點尸為第一象限拋物線上的一動點,作尸〃,3c于點H,當(dāng)最大時,求點P的坐標(biāo);

(3)如圖2,將拋物線G向右平移一個單位長度得到拋物線點、M,N都在拋物線G上,且分別在第一象

限和第三象限,連接MN,分別交x軸、y軸于點召、/,若ZN0F=ZMOE,求證:直線經(jīng)過一定點.

【答案】(l)y=-d+2x+3

315

⑵5'了

(3)見詳解

【分析】(1)將點A(-1,O)、點3(3,0)代入拋物線G:y=/+bx+3,利用待定系數(shù)法求解即可;

(2)過點尸作尸“,無軸于點Af,交直線BC于點N,證明為等腰直角三角形,利用三角函數(shù)解得

PH當(dāng)PN;利用待定系數(shù)法求得直線解析式,設(shè)P(x,*+2x+3),則N(x,—x+3),易得

PN=-X2+3X,進(jìn)而可得依/=等(--+3尤)=-9]尤一竽,結(jié)合二次函數(shù)的性質(zhì),即可獲得答案;

(3)過點M作MT_Lx軸于點T,過點N作NKLy軸于點K,首先確定拋物線G的解析式,設(shè)點M的坐

2

標(biāo)為(%,—4+4%),點N的坐標(biāo)為(程―尤之?+4x?),易得AfT=-4+4尤],OT=再,NK=—x2,OK=%2—4x2,

再設(shè)直線MV的解析式為y="zx+"(mw0),聯(lián)立直線MV的解析式和拋物線c2的解析式,可得

_?+(加-4)3+〃=0,利用一元二次方程的根與系數(shù)的關(guān)系,可得%

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論