版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
九年級上學(xué)期月考數(shù)學(xué)試卷(12月份)
一、選擇題(本大題共有10小題,每小題3分,共30分)
1.方程x?=2x的解是()
A.x=2B.xi=2,X2=0C.xi=-V2?X2=0D.x=0
2.若二次函數(shù)y=(a-1)x2+3x+a2-I的圖象經(jīng)過原點,則a的值必為()
A.1或-1B.1C.-1D.0
3.二次函數(shù)y=-2(x-I)2+3的圖象的頂點坐標(biāo)是()
A.(l,3)B.(-1,3)C.(l.,-3)D.(-1,-3)
4.學(xué)校組織才藝表演比賽,前6名獲獎.有13位同學(xué)參加比賽且他們所得的分?jǐn)?shù)互不相同.某同
學(xué)知道自己的比賽分?jǐn)?shù)后,要判斷自己能否獲獎,在這13名同學(xué)成績的統(tǒng)計量中只需知道一個量,它
是()
A.眾數(shù)B.方差C.中位數(shù)D.平均數(shù)
5.已知圓錐的底面的半徑為女m,高為4cm,則它的側(cè)面積為()
A.e15ncm2B.16ncm2C.19ncm2D.24ncm2
A.0個B.1個C.2個D.3個
7.如圖,A、D是。O上的兩個點,BC是直徑,若ND=35。,則NOAC的度數(shù)是()
8.如圖,正4ABC的邊長為3cm,動點P從點A出發(fā),以每秒1cm的速度,沿A~>B^C的方向運(yùn)動,
到達(dá)點C時停止,設(shè)運(yùn)動時間為x(秒),尸PC2,則y關(guān)于x的函數(shù)的圖象大致為()
9.如圖,等邊^(qū)ABC的周長為6TI,半徑是1的。0從與AB相切于點D的位置出發(fā),在^ABC外部
按順時針方向沿三角形滾動,乂回到與AB相切于點D的位置,則。O自轉(zhuǎn)了()
10.二次函數(shù)y=x?+bx的圖象如圖,對稱軸為直線x=l,若關(guān)于x的一元二次方程x?+bx?t=0(t為實
數(shù))在-1VxV4的范圍內(nèi)有解,則t的取值范圍是()
二、填空題(本大題共8小題,每空2分,共16分)
11.圓弧的半徑為3,弧所對的圓心角為60。,則該弧的長度為.
12.現(xiàn)有甲、乙兩個合唱隊隊員的平均身高為170cm,方差分別是S/、s2,且ST2>S3則兩
個隊的隊員的身高較整齊的是.
13.某廠一月份生產(chǎn)某機(jī)器10D臺,計劃三月份生產(chǎn)160臺.設(shè)二、三月份每月的平均增長率為x,根
據(jù)題意列出的方程是.
14.一個正多邊形的每個外角都是36。,這個正多邊形的邊數(shù)是.
15.關(guān)于x的一元二次方程x2.-3x+b=0有兩個不相等的實數(shù)根,貝此的取值范圍是.
16.已知二次函數(shù)y=ax?+bx+c的部分圖象如圖所示,其對稱軸為直線x=-I.若其與x軸的一個交點
為A,則由圖象可知,當(dāng)自變量x的取值范圍是時,函數(shù)值yVO.
17.如圖,在矩形ABCD中,AB=%,AD=1,把該矩形繞點A順時針旋轉(zhuǎn)a度得矩形ABO,點
C落在AB的延長線上,則線段CD掃過部分的面積(圖中陰影部分)是.
18.如圖,已.知拋物線y=ax2+bx+c與x軸交于A、B兩點,頂點C的縱坐標(biāo)為-2,現(xiàn)將拋物線向右
平移2個單位,得到拋物線戶aix2+bix+ci,則下列結(jié)論正確的是.(寫出所有正解
論的序號)
①b>0
②a-b+c<0
③陰影部分的面積為4
④若c=-1,則b?=4a.
三、解答題(本大題共10小題,共84分.請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證
明過程或演算步驟)
19.解方程:X2-2X-1=0.
20.解方程:(x-3)2+4X(X-3)=0.
21.在“全民讀書月〃活動中,小明調(diào)查了班級里40名同學(xué)本學(xué)期計劃購買課外書的花費(fèi)情況,并將結(jié)
果繪制成如圖所示的統(tǒng)計圖,請根據(jù)相關(guān)信息,解答下列問題:(直接填寫結(jié)果)
(1)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是:
這次調(diào)查獲取的樣本數(shù)據(jù)的中位數(shù)是:
(3)若該校共有學(xué)生1000人,根據(jù)樣本數(shù)據(jù),估計本學(xué)期計劃購買課外書花費(fèi)50元的學(xué)生有一
22.一只不透明袋子中裝有1個紅球,2個黃球,這些球除顏包外都相同,小明攪勻后從中任意摸出
一個球,記錄顏色后放回、攪勻,再從中任意摸出1個球,月畫樹狀圖或列表法列出摸出球的所有
等可能情況,并求兩次摸出的球都是紅球的概率.
23.如圖,點O為RtZXABC斜邊AB上一點,以O(shè)A為半徑的。O與BC切于點D,與AC交于點
E,連接AD.
(1)求證:AD平分NBAC;若NBAO60。,OA=2,求陰影部分的面積(結(jié)果
保留n).
24.如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過珞點A、B、C.
(I)畫出該圓弧所在圓的圓心D的位置(不用寫作法,保留作圖痕跡),并連接AD、CD.請在(1)
的基礎(chǔ)上,以點O為原點、水平方向所在直線為x軸、豎直方向所在直線為y軸,建立平面直角
坐標(biāo)系,完成下列問題:
?OD的半徑為(結(jié)果保留根號)
②若用扇形ADC圍成一個圓錐的側(cè)面,則該圓錐的底面圓半徑是;
③若E(7,0)試判斷直線EC與。D的位置關(guān)系并說明你的理由.
25.某校部分團(tuán)員參加社會公益而就準(zhǔn)備購進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤捐給慈善機(jī)構(gòu).這種許愿
瓶的進(jìn)價為6元/個,根據(jù)市場調(diào)查,一段時間內(nèi)的銷售量y(個)與銷售單價x(元/個)之間的對
應(yīng)關(guān)系如圖所示:
(I)試判斷y與x之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;按照上述市場調(diào)查的銷售規(guī)
律,當(dāng)利潤達(dá)至U1200元時,請求出許愿瓶的銷售單價x:
(3)請寫出銷售利潤w(元)與銷售單價x(元/個)之間的函數(shù)關(guān)系式;若許愿瓶的進(jìn)貨成本不超過900
元,要想獲得最大的利潤,試確定這種許愿瓶的銷售單價,并求出此時的最大利潤.
26.如圖,在直角坐標(biāo)系中,勉物線經(jīng)過點A(0,4),B(1,0),C(5,0),其對廨i與.
(1)求拋物線的解析式和對稱軸;
在拋物線的對稱軸上是否存在一點P,使^PAB的周長最?。咳舸嬖?,請求出點P的坐標(biāo);若不存在,
請說明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點N,使4NAC的面積最大?若存在,請
求出點N的坐標(biāo);若不存在,請說明理由.
27.如圖1至圖4中,兩平行線AB、CD間的距離均為6,點M為AB上一定點.思
考
如圖1,圓心為0的半圓形紙片在AB,CD之間(包括AB,CD),其直徑MN在AB上,MN=8,點P
為半圓上一點,設(shè)NMOP=a.
當(dāng)。=度時,點P到CD的距離最小,最小值為一
_________________.探究一
在圖1的基礎(chǔ)上,以點M為旋轉(zhuǎn)中心,在AB,CD之間順時針旋轉(zhuǎn)該半圓形紙片,直到不能再轉(zhuǎn)動
為止,如圖2,得到最大旋轉(zhuǎn)角/BMO=度,此粒點N到CD的距離是_
___________________________________________________.探究二
將如圖1中的扇形紙片NOP按下面對a的要求剪掉,使扇形紙片MOP繞點M在AB,CD之間順時
針旋轉(zhuǎn).
(1)如圖3,當(dāng)a=60°時,求在旋轉(zhuǎn)過程中,點P到CD的最小距離,并請指出旋轉(zhuǎn)角NBMO的最大值;
如圖4,在扇形紙片MOP旋轉(zhuǎn)過程中,要保證點P能落在直線CD」二,請確定a的取值范圍.
(參考數(shù)楣:sin49=乜,cos41°=^,tan37°=^)
.44.4
圖1圖2圖3圖4
28.在平面直角坐標(biāo)系中,O為原點,直線y=-2x-1與y軸交于點A,與直線y=-x交于點B,點
B關(guān)于原點的對稱點為點C.
(1)求過A,B,C三點的拋物線的解析式;
P為拋物線上一點,它關(guān)于原點的對稱點為Q.
①當(dāng)四邊形PBQC為菱形時,求點P的坐標(biāo);
②若點P的橫坐標(biāo)為t(-1VtVl)當(dāng)t為何值時,四邊形PBQC面積最大?并說明理由.
江蘇省無錫市宜興市桃溪中學(xué)屆九年級上學(xué)期月考數(shù)學(xué)試
卷(12月份)
參考答案與試題解析
一、選擇題(本大題共有10G題,每小題3分,共30分)
1.方程x?=2x的解是()
A.x=2B.xi=2,X2=0C.xi=-V2?X2=0D.x=0
【考點】解一元二次方程-因式分解法.
【分析】把右邊的項移到左邊,用提公因式法因式分解求出方程的根.
【解答】解:X2=2X,
x2-2x=0,x(x-2)
=0,
***x=0,x-2=0,
,xi=0,X2=2,故選:
B.
【點評】本題考查了運(yùn)用因式分解法解一元二次方程的方法:先把方程右邊化為0,再把方程左邊進(jìn)
行因式分解,然后一元二次方程就可化為兩個一元一次方程,解兩個一元一次方程即可.
2.若二次函數(shù)y=(a-1)x2+3x+a2-I的圖象經(jīng)過原點,則a的值必為()
A.1或-1B.1C.-1D.0
【考點】二次函數(shù)圖象上點的坐標(biāo)特征;二次函數(shù)的定義.
【分析】先把原點坐標(biāo)代入二次函數(shù)解析式得到a的方程,解方程得到a=l或a=-l,根據(jù)二次函數(shù)
的定義可判斷a=-1.
【解答】解:把(0,0)RAy=(a-1)x2+3x+a2-1,得
a2-1=0,解得a=l或a=-1,
因為a?1工0,
所以axl,即a=-l.故
選C.
【點評】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征:二次函數(shù)丫=2*2+5*+?(a、b、c為常數(shù),a#0)圖
象上的點的坐標(biāo)滿足其解析式,同時考杳了二次函數(shù)的定義.
3.二次函數(shù)y=-2(x-I)2+3的圖象的頂點坐標(biāo)是()
A.(l,3)B.(-1,3)C.(L-3)D.(-1,-3)
【考點】二次函數(shù)的性質(zhì).
【分析】根據(jù)二次函數(shù)頂點式解析式寫出頂點坐標(biāo)即可.
【解答】解:二次函數(shù)廣-2(x-1)2+3的圖象的頂點坐標(biāo)為(1,3).故選A.
【點評】本題考查了二次函數(shù)的性質(zhì),熟練掌握利用頂點式解析式寫出頂點坐標(biāo)的方法是解題的關(guān)鍵.
4.學(xué)校組織才藝表演比賽,前6名獲獎.有13位同學(xué)參加比賽且他們所得的分?jǐn)?shù)互不相司.某同
學(xué)知道自己的比賽分?jǐn)?shù)后,要判斷自己能否獲獎,在這13名同學(xué)成績的統(tǒng)計量中只需知道?個量,它
是()
A.眾數(shù)B.方差C.中位數(shù)D.平均數(shù)
【考點】統(tǒng)計量的選擇.
【分析】由于比賽設(shè)置了6個獲獎名額,共有13名選手參加,故應(yīng)根據(jù)中位數(shù)的意義分析.
【解答】解:因為6位獲獎?wù)叩姆謹(jǐn)?shù)肯定是13名參賽選手中最高的,
而且13個不同的分?jǐn)?shù)按從小到大排序后,中位數(shù)及中位數(shù)之后的共有6個數(shù),
故只要知道自己的分?jǐn)?shù)和中位數(shù)就可以知道是否獲獎了.
故選C.
【點評】此題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集
中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進(jìn)行合理的選擇和
恰當(dāng)?shù)倪\(yùn)用.
5.已知圓錐的底面的半徑為3cm,高為4cm,則它的側(cè)面積為()
A.15Tlem2B.1611cm2C.19ncm2D.24Tlem2
【考點】圓錐的計算;弧長的計算;扇形面積的計算.
【專題】計算題.
【分析】先利用勾股定理計算出母線長PA,然后根據(jù)圓錐的則面展開圖為扇形,扇形的弧長等于圓錐
的底面圓的周長,扇形的半徑等于圓錐的母線長,利用扇形的面積公式計算即可.
【解答】解:如圖,OA=3cm:高P0=4cm,
在RlZ\PAO中,PA=^OA2+po2=^32+42=5,
二?圓錐的側(cè)面積=1?2H?3X5=I5TI(cm2).故
2
選A.
【點評】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為扇形,扇形的弧長等于圓錐的底面圓的周長,扇
形的半徑等于圓錐的母線長.也考查了扇形的面積公式以及勾股定理.
A.。個B.I個C.2個D.3個
【分析】等弧必須同圓中長度相等的?。徊辉谕恢本€上任意三點確定一個圓;在等圓中相等的圓心
角所對的弦相等;外心在三角?形的一條邊.匕的三角形是直角三角形.
【解答】解:①等弧必須同圓中長度相等的弧,故本選項錯誤.
②不在同一直線上任意三點確定一個圓,故B本項錯誤.
③在等圓中相等的圓心角所對的弦相等,故本選項錯誤.
④外心在三角形的一條邊上的三角形是直角三角形,故本選項正確.所以只有
④一項正確.
故選B.
7.如圖,A、D是。O上的兩個點,BC是直徑,若ND=35。,則/OAC的度數(shù)是()
A.35。B.55。C.65。D.70°
【考點】圓周角定理.
【分析】在同圓和等圓中,同弧所對的圓心角是圓周角的2倍,所以NAOC=2ND=70。,而△AOC中,
AO=CO,所以NOAC=/OCA,而180°-ZAOC=110°,所以NOAC=55°.
【解答】解:???/D=35。,
ZAOC=2ZD=70°,
AZOAC=(180°-ZAOC)+2=110Y2=55°.
故選:B.
【點評】本題考查同弧所對的圓周角和圓心角的關(guān)系.規(guī)律總結(jié):解決與圓有關(guān)的角度的相關(guān)計算時,
一般先判斷角是圓周角還是圓心角,再轉(zhuǎn)化成同弧所對的圓周角或圓心角,利用同弧所對的圓周角相
等,同弧所對的圓周角是圓心角的一半等關(guān)系求解,特別地,當(dāng)有一直徑這一條件時,往往要用到直
徑所對的圓周角是直角這一條件.
8.如圖,正aABC的邊長為3cm,動點P從點A出發(fā),以每秒1cm的速度,沿AfB1C的方向運(yùn)動,
到達(dá)點C時停止,設(shè)運(yùn)動時間為x(秒),產(chǎn)PC2,則y關(guān)于x的函數(shù)的圖象大致為()
【考點】動點問題的函數(shù)圖象.
【專題】壓軸題.
【分析】需要分類討論:①雛x§,即點P在線段AB上時,根據(jù)余弦定理知8sA二世普八;所以
___2PA*.AC____
將相關(guān)線段的長度代入該等式,即可求得y與x的函數(shù)關(guān)系式,然后根據(jù)函數(shù)茨素受確定逐函數(shù)的圖
象.②當(dāng)3Vxs6,即點P在線段BC上時,y與x的函數(shù)關(guān)系式是丫=(6-x)2=(x-6)2
(3<x<6)根據(jù)該函數(shù)關(guān)系式可以確定該函數(shù)的圖象.
【解答】解::正△ABC的邊長為3cm,
AZA=ZB=ZC=60°,AC=3cm.
、Ap2+A「2.pc2
①當(dāng)04(0<X<3);根據(jù)余弦定理知cosA=------------------------
2PA-AC
即工一y,
C公
2
解得,y=x-3x+9(()<x<3);該函數(shù)圖象是
開口向上的拋物線;
解法二:過C作CD_LAB,則AD=1.5cm,CD=Afxm,
點P在AB上時,AP=,
2+(1.5-x)2=x2-3x+9(0<x<3)該函數(shù)圖象是開口向上的
拋物線;
②當(dāng)3V(3VxW6J
則尸(6-x)2=(x-6)2(3Vx《6)
???該函數(shù)的圖象是在3<xW6上的拋物線;
故選:C.
【點評】本題考查了動點問題的函數(shù)圖象.解答該題時.,需要對點P的位置進(jìn)行分類討論,以防錯
選.
9.如圖,等邊^(qū)ABC的周長為6TI,半徑是1的。0從與AB相切于點D的位置出發(fā),在^ABC外
部按順時針方向沿三角形滾動,又回到與AB相切于點D的,立置,則自轉(zhuǎn)了()
A.2周B.3周C.4周D.5周
【考點】直線與圓的位置關(guān)系;等邊三角形的性質(zhì).
【專題】壓軸題.
【分析】該圓運(yùn)動可分為兩部分:在三角形的三邊運(yùn)動以及繞過三角形的三個角,分別計算即可得到
圓的自傳周數(shù).
【解答】解:圓在三邊運(yùn)動自轉(zhuǎn)周數(shù):@工3,圓繞過三角形外角時,共自轉(zhuǎn)了
三角形外角和的度數(shù):360°,即一周;可寬:00自轉(zhuǎn)了3+1=4周.
故選:C.
【點評】本題考查了圓的旋轉(zhuǎn)與三角形的關(guān)系,要充分利用等邊三角形的性質(zhì)及圓的周氏公式解答.
10.二次函數(shù)y=x?+bx的圖象如圖,對稱軸為直線x=l,若關(guān)于x的一元二次方程x?+bx-t=0(t為實
數(shù))在-1<XV4的范圍內(nèi)有解,則t的取值范圍是()
A.t>-IB.-1<K3C.-l<t<8D.3<t<8
【考點】二次函數(shù)與不等式(組)
【專題】壓軸題.
【分析】根據(jù)對稱軸求出b的值,從而得到x=?l、4時的函數(shù)值,再根據(jù)一元二次方程x2+bx?t=0
(t為實數(shù))在-1VxV4的范圍內(nèi)有解相當(dāng)于y=x?+bx與y=t在x的范圍內(nèi)有交點解答.
【解答】解:對稱軸為直線x=?
2X1
解得b:-2,
所以,二次函數(shù)解析式為y=x?-2x,
y=(x-1)2-1,
x=-1時,y=1+2=3,
x=4時,y=16-2x4=8,
Vx2+bx-1=0相當(dāng)于y=x?+bx與直線y=l的交點的橫坐標(biāo),
???當(dāng)741V8時,在-1<XV4的范圍內(nèi)有
【點評】本題考查了二次函數(shù)與不等式,把方程的解轉(zhuǎn)化為兩個函數(shù)圖象的交點的問題求解是解題的
關(guān)犍,作出圖形更形象直觀.
二、填空題(本大題共8小題,每空2分,共16分)
11.I員I弧的半徑為3,弧所對的圓心角為60。,則該弧的長度為二.
【考點】弧長的計算.
【分析】利用弧長公式即可直接求解.
【解答】解:弧長是:60兀>(3
__180
=n.故答案是:n.
【點評】本題考查了弧長的計算公式,止確記憶公式是關(guān)鍵.
12.現(xiàn)有甲、乙兩個合唱隊隊員的平均身高為170cm,方差分別是S甲2、S乙2,且S甲2>s乙2,則
兩個隊的隊員的身高較整齊的是上」.
【考點】方差.
【分析1利用方差越大,則平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則它與其平均值的離散程
度越小,穩(wěn)定性越好,進(jìn)而分析得出答案.
【解答】解:??飛甲2>S乙2,
???兩個隊的隊員的身高較整齊的是:
乙.故答案為:乙.
【點評】此題主要考查r方差的意義,正確理解方差的意義是解題關(guān)鍵.
13.某廠一月份生產(chǎn)某機(jī)器100臺,計劃三月份生產(chǎn)160臺.設(shè)二、三月份每月的平均增長率為x,
根據(jù)題意列出的方程是100(1+x)2=160.
【考點】由實際問題抽象出一元二次方程.
【專題】增長率問題.
【分析】設(shè)二,三月份每月平均增長率為x,根據(jù)一月份生產(chǎn)機(jī)器100臺,三月份生產(chǎn)機(jī)器160臺,
可列出方程.
【解答】解:設(shè)二,三月份每月平均增長率為X,
100(1+x)2=160.
故答案為:100(1+x)2=160.
【點評】本題考查理解題意的能力,本題是個增長率問題,發(fā)生了兩次變化,先找出一月份的產(chǎn)量和
三月份的產(chǎn)量,從而可列出方程.
14.一個正多邊形的每個外角都是36。,這個正多邊形的邊數(shù)是10.
【考點】多邊形內(nèi)角與外角.
【分析】多邊形的外角和等于360。,因為所給多邊形的每個外角均相等,故又可表示成36%,列方
程可求解.
【解答】解:設(shè)所求正n邊形邊數(shù)為n,
貝1」36。產(chǎn)360。,
解得n=10.故正多邊形
的邊數(shù)是10.
【點評】本題考查根據(jù)多邊形的外角和求多邊形的邊數(shù),解答時要會根據(jù)公式進(jìn)行正確運(yùn)算、變形和
數(shù)據(jù)處理.
15.關(guān)于x的一元二次方程x2-3x+b=0有兩個不相等的實數(shù)根,則b的取值范圍是.
4
【考點】根的判別式.
【專題】計算題.
【分析】根據(jù)判別式的意義得到△:(-3)2-4b>0,然后解不等式.即可.
【解答】解:根據(jù)題意得△下(-3)2-4b>0,解
得
故答案為:b<—.
A
【點評】本題考查了一元二次方程ax2+bx+c=0(a#0)的根的判別式△;b?-4ac:當(dāng)△>(),方程有兩
個不相等的實數(shù)根;當(dāng)△=(),方程有兩個相等的實數(shù)根;當(dāng)△<(),方程沒有實數(shù)根.
16.已知二次函數(shù)y=ax2+bx+c的部分圖象如圖所示,其對稱軸為直線x=-l.若其與x軸的一個交
點為A,則由圖象可知,當(dāng)自變量x的取值范圍是x>2或xV-4時,函數(shù)值yVO.
【考點】拋物線與x軸的交點.
【分析】利用二次函數(shù)的對稱性,得出圖象與X軸的另一個交點坐標(biāo),再結(jié)合圖象,得出y的取值
小于0時,圖象為x軸下方部分,即可得出自變量x的取值范圍.
【解答】解:;二次函數(shù)對稱軸為直線x=-1,與x軸交點為A,
,根據(jù)二次函數(shù)的對稱性,可得到圖象與x軸的另一個交點坐標(biāo)為(-4,0),又
???函數(shù)開口向下,x軸下方部分y<0,
AX>2或xV-4,故答案為:
x>2或xV-4.
【點評】此題主要考查了二次函數(shù)的對稱性,以及結(jié)合二次函數(shù)圖象觀察函數(shù)的取值問題.
17.如圖,在矩形ABCD中,AB=V3>AD=1,把該矩形繞點A順時針旋轉(zhuǎn)a度得矩形ABO,
點C,落在AB的延長線上,則線段CD掃過部分的面積(圖中陰影部分)是——.
D
R1
【考點】扇形面積的計算;旋轉(zhuǎn)的性質(zhì).
【分析】根據(jù)圖示知,S陰影=S府杉ACC-SAAEC+(—S矩形ABCD-S成形ADD-SAAIYE).根據(jù)圖形的面積
,2
公式、旋轉(zhuǎn)的性質(zhì)以及勾股定理求得相關(guān)數(shù)據(jù)代入即可求得陰影部分的面積.
【解答】解:如圖,連接AC.
在矩形ABCD中,AB=CD=加,AD=1,則AC=?^E^=2.根據(jù)旋
轉(zhuǎn)的性質(zhì)得到:NDAD'=/CAC';a,AD=AD'=1,C,D,=CD=立.所以
S陰影=S-SAAEC+(」S矩形ABCD-S明形ADD,-SAADT)
2
=SUi形ACC矩形ABCD-S廚形ADD',
QKX12
2N......360.
Va=ZCAC=30%
,JTa
_120.
—.故答寶是:
-1.
R'
【點評】此題主要考查了矩形的性質(zhì)以及旋轉(zhuǎn)的性質(zhì)以及扇形面積公式等知識,此題利用「'分割法”對
不規(guī)則圖形進(jìn)行面積的計算.
18.如圖,已知拋物線y=ax?+bx+c與x軸交于A、B兩點,頂點C的縱坐標(biāo)為-2,現(xiàn)將拋物線向
2
右平移2個單位,得到拋物線y=a1x+bix+c1,則下列結(jié)論正確的是③④.(寫出所有正確結(jié)論的
序號)
①b>0
②a-b+c<0
③陰影部分的面積為4
④若c=?LMb2=4a.
【考點】二次函數(shù)圖象與幾何變換;二次函數(shù)圖象與系數(shù)的關(guān)系.
【專題】壓軸題.
【分析】①首先根據(jù)拋物線開口向上,可得a>0;然后根據(jù)對稱軸為x=-上>0,可得b<0,據(jù)
此判斷即可.
②根據(jù)拋物線尸ax?+bx+c的圖象,可得x=-l時,y>0,即a-b+c>0,據(jù)此判斷即可.
⑨首先判斷出陰影部分是一個平行四邊形,然后根據(jù)平行四邊形的面積二底、高,求出陰影部分的面
枳是多少即可.
2
④根據(jù)函數(shù)的最小值是,a。一上二一2,判斷出c=-l時,a、rb的關(guān)系即可.
【解答】解:???拋物線開口向上,
Aa>0,
乂:對稱軸為x=-A>0,
2a
.*.b<0,
?二結(jié)論①不正確;
*.*x=-1時,y>0,
*'?a-b+c>0?
,結(jié)論②不正確:
???拋物線向右平移了2個單位,
???平行四邊形的底是2,
V^1fcy=ax2+bx+c的最小值是y=-2,
,平行四邊形的高是2,
;?陰影部分的面積是:2x2=4,
???結(jié)論③正確;
/.b2=4a,
???結(jié)論④正確.綜上,結(jié)論正
確的是:③④.故答案為:
③④.
【點評】(1)此題主要考查了二次函數(shù)的圖象與幾何變換,要熟練掌握,解答此類問題的關(guān)健是要明
確:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通常可利用兩種方
法:一,是求出原拋物線上任意兩點平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后
的頂點坐標(biāo),即可求出解析式.此題還考查了二次函數(shù)的圖象與系數(shù)的關(guān)系,要熟練掌握,解.答此
題的關(guān)鍵是要明確:①二次項系數(shù)a決定拋物線的開口方向和大小:當(dāng)a>0時,拋物線向上開口;
當(dāng)a<0時,拋物線向下開口;
②一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當(dāng)a與b同號時(即ab>0)對稱軸在y軸左;
當(dāng)a與b異號時(即ab<0)對稱軸在y軸右.(簡稱:左同右異)③.常數(shù)項c決定拋物線與y軸交
點.拋物線與y軸交于(0,c)
三、解答題(本大題共10小題,共84分.請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、
證明過程或演算步驟)
19.解方程:x2-2x-1=0.
【考點】解一元二次方程-公式法.
【專題】計算題.
【分析】先整理成一元二次方程的一般形式再利用求根公式求解,或者利用配方法求解皆可.
【解答】解:解法一;??飛=1,b=-2,c=-I
Ab2-4ac=4-4xlx(-1)=8>0
..一土心明咨
x2a2X1J"/
,;
?**x1=l+V2x2=l-V2
解法二:(x-1)2=2
?e*X-1=±V2
A,
x1=1+V2x2=l-V2,
(b2-4ac>0)
20.解方程:(x?3)2+4X(x-3)=0.
【考點】解一元二次方程-因式分解法.
【專題】壓軸題;因式分解.
【分析】方程的左邊提取公因式x-3,即可分解因式,因而方程利用因式分解法求解.
【解答】解:原式可化為:(x-3Xx-3+4x)=0
?*-x-3=0或5x-3=0
解得X]=3,x2=-g,
【點露】"采法窘善了一元二次方程的解法,解一元二次方程常用的方法有直接開平方法,配方法,公
式法,因式分解法,要根據(jù)方程的特點靈活選用合適的方法.
21.在"全民讀書月”活動中,小明調(diào)查了班級里40名同學(xué)本學(xué)期計劃購買課外書的花費(fèi)情況,并將結(jié)
果繪制成如圖所示的統(tǒng)計圖,請根據(jù)相關(guān)信息,解答下列問題:(直接填寫結(jié)果)
(1)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是30元;
這次調(diào)查獲取的樣本數(shù)據(jù)的中位數(shù)是50元:
(3)若該校共有學(xué)生1000人,根據(jù)樣本數(shù)據(jù),估計本學(xué)期計劃購買課外書花費(fèi)50元的學(xué)生有_250
【分析】(1)眾數(shù)就是出現(xiàn)次數(shù)最多的數(shù),據(jù)此即可判斷;中位數(shù)就是大小處于中間位置的數(shù),根據(jù)
定義判斷;
(3)求得調(diào)查的總?cè)藬?shù),然后利用』000乘以本學(xué)期計劃購買課外書花費(fèi)50元的學(xué)生所占的比例即可
求解.
【解答】解:(1)眾數(shù)是:30元,故答案是:30元;中
位數(shù)是:50元,故答案是:50元;
(3)調(diào)查的總?cè)藬?shù)是:6+12+10+8+4=40(人)則估計本學(xué)期計劃購買課
外書花費(fèi)50元的學(xué)生有:1000x^=250(人)
.40
故答案是:250.
【點評】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運(yùn)用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必
要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部
分占總體的百分比大小.
22.一只不透明袋子中裝有1個紅球,2個黃球,這些球除顏色外都相同,小明攪勻后從中任意摸
出一個球,記錄顏色后放回、攪勻,再從中任意摸出1個球,用畫樹狀圖或列表法列出摸出球的所
有等可能情況,并求兩次摸出的球都是紅球的概率.
【考點】列表法與樹狀圖法.
【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次摸出的球都是紅球的
情況,再利用概率公式即可求得答案.
【解答】解:畫樹狀圖得:
開始
紅黃黃
/NZN/T\
紅黃黃紅黃黃紅黃黃
;共有9種等可能的結(jié)果,兩次摸出的球都是紅球的只有I種情況,
,兩次摸出的球都是紅球的概率為:-i.
£
【點評】此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.
23.如圖,點0為RtaABC斜邊AB上一點,以0A為半徑的。0與BC切于點D,與AC交于點
E,連接AD.
(1)求證:AD平分NBAC;若NBAC=60。,0A=2,求陰
影部分的面積(結(jié)果保留n).
G)rtRtAABC中,NET,OO切BC于D,易證僦C〃OD,繼而證得AD平分/CAB.如圖,
連接ED,根據(jù)(1)中AC〃OD和菱形的判定與性質(zhì)得到四邊形AEDO是菱形,則
△AEM^ADMO,則圖中陰影部分的面積二扇形EOD的面積.
【解答】(1)證明:???。0切BC于D,
AOD1BC,
VAC1BC,
,AC〃OD,
,NCAD二NADO,
VOA=OD,
/.ZOAD=ZADO,
,ZOAD=ZCAD,
即AD平分NCAB;
設(shè)EO與AD交于點M,連接ED.
VZBAC=60°,OA=OE,
AZAEO是等邊三角形,
AAE=OA,ZAOE=60%
.*.AE=AO=OD,
又由(1)知,AC〃OD即AE〃OD,
???四邊形AEDO是菱形,則△AEMg/\DMO,ZEOD=60°,
*,?SAAEM=SADMO?
??S明杉=S用彩=.
【點評】此題考查了切線的性質(zhì)、等腰三角形的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意
數(shù)形結(jié)合思想的應(yīng)用.
24.如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過珞點A、B、C.
(1)畫出該圓弧所在圓的圓心D的位置(不用寫作法,保留作圖痕跡),并連接AD、CD.請在(1)
的基礎(chǔ)上,以點0為原點、水平方向所在直線為x軸、豎直方向所在直線為y軸,建立平面直角
坐標(biāo)系,完成下列問題:
@OD的半徑為—275—(結(jié)果保留根號)
②若用扇形ADC圍成一個圓錐的側(cè)面,則該圓錐的底面圓半徑是_夸一;
③若E(7,0)試判斷直線EC與。D的位置關(guān)系并說明你的理由.
【考點】圓的綜合題.
【分析】(1)根據(jù)題意建立平面直角坐標(biāo)系,然后作出弦AB的垂直平分線,以及BC的垂直平分線,
兩直線的交點即為圓心D,連接AD,CD;
①根據(jù)第一間畫出的圖形即可得出C及D的坐標(biāo);
②在直角三角形AOD中,由OA及OD的長,利用勾股定理求出AD的長,即為圓O的半徑:
③直線CE與圓0的位置關(guān)系是相切,理由為:由圓的半徑得出DC的長,在直角三角形CEF中,
由CF及FE的長,利用勾股定理求出CE的長,再由DE的長,利用勾股定理的逆定理得出三角形
DCE為直角三角形,即EC垂直于DC,可得出直線CE為圓O的切線.
【解答】解:(1)根據(jù)題意畫出相應(yīng)的圖形,如圖所示:
①在RtZ\AOD中,OA=4,0D=2,根據(jù)勾
股定理得:AD=40A2+0D2=2%,則
0D的半徑為2的;
22=2
@AC=^2+6^CD=2返
AD2+CD2=AC2,
/.ZADC=90°.
扇形ADC的弧長==V5n?
圓錐的底面的半徑二;
③直線EC與。D的位置關(guān)系為相切,
理由為:在RlACEF中,CF=2,EF=1,根
22=
據(jù)勾股定理得:CE=-7CF+FF^
在4CDE中,CD=2U5,CE=Y5,DE=5,
VCE2+CD2=(%)2+2=5+20=25,DE2=25,
ACE2+CD2=DE2,
???△CDE為直角三角形,即NDCE=90。,則
CE與圓D相切.
【點評】此題考查了直線與圓的位置關(guān)系,涉及的知識有:坐標(biāo)與圖形性質(zhì),垂徑定理,勾股定理及逆
定理,切線的判定,利用了數(shù)形結(jié)合的思想.,根據(jù)題意畫出相應(yīng)的圖形是解木題的關(guān)鍵.
25.某校部分團(tuán)員參加社會公益活動,準(zhǔn)備購進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤捐給慈善機(jī)構(gòu).這種許
愿瓶的進(jìn)價為6元/個,根據(jù)市場調(diào)查,一段時間內(nèi)的銷售量y(個)與銷售單價x(元/個)之間的
對應(yīng)關(guān)系如圖所示:
(I)試判斷y與x之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;按照上述市場調(diào)查的銷售規(guī)
律,當(dāng)利潤達(dá)到1200元時,請求出許愿瓶的銷售單價x;
(3)請寫出銷售利潤w(元)與銷售單價x(元/個)之間的函數(shù)關(guān)系式;若許愿瓶的進(jìn)貨成本不超過90()
元,要想獲得最大的利潤,試確定這種許愿瓶的銷售單價,并求出此時的最大利潤.
N(個)
300
》元個)
10121416x(
【考點】二次函數(shù)的應(yīng)用.
【分析】(1)觀察可得該函數(shù)圖象是一次函數(shù),設(shè)出一次函數(shù)解析式,把其中兩點代入即可求得該函
數(shù)解析式,進(jìn)而把其余兩點的橫坐標(biāo)代入看縱坐標(biāo)是否與點的縱坐標(biāo)相同;銷售利潤;每個許愿瓶
的利潤x銷售量;
(3)根據(jù)進(jìn)貨成本可得自變量的取值,結(jié)合二次函數(shù)的關(guān)系式即可求得相應(yīng)的最大利潤.
【解答】解:(l)y是x的一次函數(shù),設(shè)丫=1^+6圖象過點(10,300M12,240)
解得,
故丫=-30x4-600,
當(dāng)x=14時,y=180;當(dāng)x=16時,y=120,即點(14,180),(16,
120)均在函數(shù)丫=-30X+600的圖象上,
:?、與x之間的函數(shù)關(guān)系式為y=-30x+600.
(x-6)(-30x+600)=1200,解
得:x=IO或x=16,
答:許愿瓶的銷售單價x為10元或16元;
(3)w=(x-6)(-30x+600)=-30x2+780x-3600
即w與x之間的函數(shù)關(guān)系式為w=-30X2+780X-3600.由題意
得6(-30x4-600)<900,解得壯15,w=-30x2+780x-36(X)圖
象對稱軸為x=?…戶!=13,
。2?命X"[■,?>(■-■■3I■■0/.■)mil
Va=-30VO,
,拋物線開口向下,當(dāng)疝15時,w隨x增大而減小,
???當(dāng)x=15時,w最大=133().
即以15元/個的價格銷售這批許愿瓶可獲得最大利潤135。元.
【點評】考查了二次函數(shù)的應(yīng)用,(1)問中,主要考察用待定系數(shù)法求一次函數(shù)的綜合應(yīng)用;(3)M
中,主要結(jié)合(1)問中一次函數(shù)的性質(zhì),求出二次函數(shù)的最值問題.
26.如圖,在直角坐標(biāo)系中,物物線經(jīng)過點A(0,4),B(1,0),C(5,0),其對函ill與.
(1)求拋物線的解析式和對稱軸;
在拋物線的對稱軸上是否存在一點p,使APAB的周長最?。咳舸嬖?,請求出點p的坐標(biāo);若不存
在,請說明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點N,使4NAC的面積最大?若存在,請
求出點N的坐標(biāo);若不存在,請說明理由.
【考點】二次函數(shù)綜合題.
【專題】壓軸題.
[分析XI)拋物線經(jīng)過點A(0,4)B(1,0)C(5,0)可利用兩點式法設(shè)拋物線的解析式為y=a
(x-l)(x-5)代入A(0,4)即可求得函數(shù)的解析式,則可求得拋物線的對稱軸;
點A關(guān)于對稱軸的對稱點A,的坐標(biāo)為(6,4),連接BA,交對稱軸于點P,連接AP,此時^PAB的周長
最小,可求出直線BA,的解析式,即可得出點P的坐標(biāo).
(3)在直線AC的下方的拋物線上存在點N,使4NAC面積最大.設(shè)N點的橫坐標(biāo)為3此時點N
(t,g2-&H4)(0<t<5),再求得直線AC的解析式,即可求得NG的長與4ACN的面積,由二次
55
函數(shù)最大的問題即可求得答案.
【解答】解:(I)根據(jù)已知條件可設(shè)拋物線的解析式為尸(x-1)(x-5),把點A(0,
4)代入上式得:a=&
.5
(x-1)(x7)=-^x2-爭x+4=](x-3)2-羋,
,拋百線的對稱軸是:x£P(guān)CC
點坐標(biāo)為(3,2).理由如
-5
下:
;點A(0,4)拋物線的對稱軸是x=3,
,點A關(guān)于對稱軸的對稱點A,的坐標(biāo)為(6,4)
如圖1,連接BA,交對稱軸于點P,連接AP,此時^PAB的周長最小.
圖1
設(shè)直線BA,的解析式為y=kx+b.
把A,(6,4),B(l,0)代入得[4=6k+b,解
I0=k+b
得
“區(qū)-旦
JJ
丁點P的橫坐標(biāo)為3,
???丫二曳3-工目
_5上上
;.P(3,衛(wèi))
(3)在直線AC的下方的拋物線上存在點N,使ANAC面積最
大.設(shè)N點的橫坐標(biāo)為t,此時點N(t,42-義1聞(0<t<5),
J一5
如圖2,過點N作NG〃y軸交AC于G;作AD_LNG于D,
圖2
由點A(0,4)和點C(5,0)可求出直線AC的解析式為:y=-4+4,把
J
x=t代入得:y=-Jt+4,則G(t,-44),此時:NG=--
-5,5_5
t+4-(4--1+4)=--t2+4t,
.5.5.5
VAD+CF=CO=5,
?*-SAACN=SAANG+SACGN=-ADXNG+&GXCF=&G?OC=L(-42+4t)x5=-2t2+10t=-2(t-W)
222252
2.25,
2
.??當(dāng)t=3i寸,acAN面積的最大值為&,
_22
由t二也,得:y=-^t2--^^t+4=-3,
2J,5.
AN(_5,-3)
1
【點評】本題主要考杳了二次函數(shù)與方程、幾何知識的綜合應(yīng)用,解題的關(guān)鍵是方程思想與數(shù)形結(jié)合
思想的靈活應(yīng)用.
27.如圖1至圖4中,兩平行線AB、CD間的距離均為6,點M為AB上一定點.思考
如圖1,圓心為0的半圓形紙片在AB,CD之間(包括AB,CD),其直徑MN在AB上,MN=8,點P
為半【員I上一點,設(shè)NMOP=a.
當(dāng)a二90度
時,點P到CD的距離最小.最小值為2
___________.探究一
在圖1的基礎(chǔ)上,以點M為旋轉(zhuǎn)中心,在AB,CD之間順時針旋轉(zhuǎn)該半圓形紙片,直到不能再轉(zhuǎn)
動為止,如圖2,得到最大旋轉(zhuǎn)角NBMO=30度,此時點N到CD的距離是_2_.
探究二
將如圖1中的扇形紙片NOP按下面對a的要求剪掉,使扇形紙片MOP繞點M在AB,CD之間順
時針旋轉(zhuǎn).
(1)如圖3,當(dāng)a=60。時,求在旋轉(zhuǎn)過程中,點P到CD的最小距離,并請指出旋轉(zhuǎn)角NBMO的最大
值;
如圖4,在扇形紙片MOP旋轉(zhuǎn)過程中,要保證點P能落在直線CD上,請確定a的取值范圍.
(參考數(shù)據(jù):sin參。cos41°=^,tan37?衛(wèi))
.444
圖1圖2圖3圖4
【考點】直線與圓的位置關(guān)系;點到直線的距離;平行線之間的距離:旋轉(zhuǎn)的性質(zhì);解直角三角形.
【專題】壓軸題.
【分析】思考:根據(jù)兩平行線之間垂線段最短,以及切線的性質(zhì)定理,直接得出答案;探究一:根
據(jù)由MN=8,MO=4,OY=4,得出UO=2,即可得出得到最大旋轉(zhuǎn)角/BMO=30度,此時點N到CD
的距離是2;
探究二:(1)由己知得出M與P的距離為4,PM1AB時,點MP到AB的最大距離是4,從而點P
到CD的最小距離為6-4=2,即可得出NBMO的最大值;
分別求出a最大值為/OMH+NOHM=30。+90。以及最小值a=2NMOH,即可得Hla的取值范圍.
【解答】解:思考:根據(jù)兩平行線之間垂線段最短,直接得出答案,當(dāng)a=90度時,點P到CD的距離
最小,
VMN=8,
???OP=4,
,點P到CD的距離最小值為:6-
4=2.故答案為:90,2:
圖
圖1圖23圖4
探究一::以點M為旋轉(zhuǎn)中心,在AB,CD之間順時針旋轉(zhuǎn)該半圓形紙片,直到不能再轉(zhuǎn)動為止,
如圖2
VMN=8,M0=4,0Y=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 職業(yè)健康促進(jìn)醫(yī)療合規(guī)管理體系
- 馬鞍山2025年安徽馬鞍山博望區(qū)公辦小學(xué)勞務(wù)派遣制教師招聘教師16人筆試歷年參考題庫附帶答案詳解
- 襄陽2025年湖南襄陽市南漳縣人民醫(yī)院招聘17人筆試歷年參考題庫附帶答案詳解
- 職業(yè)傳染病防控中的信息化管理平臺
- 深圳2025年廣東深圳市南山區(qū)博士選聘10人筆試歷年參考題庫附帶答案詳解
- 河源2025年廣東河源江東新區(qū)招聘事業(yè)編制教師31人筆試歷年參考題庫附帶答案詳解
- 株洲2025年湖南株洲市淥口區(qū)職業(yè)中等專業(yè)學(xué)校兼職專業(yè)教師招聘11人筆試歷年參考題庫附帶答案詳解
- 新疆2025年中國地質(zhì)調(diào)查局烏魯木齊自然資源綜合調(diào)查中心招聘41人筆試歷年參考題庫附帶答案詳解
- 德州2025年山東德州慶云縣第一中學(xué)招聘教師4人筆試歷年參考題庫附帶答案詳解
- 山西2025年山西職業(yè)技術(shù)學(xué)院招聘15人筆試歷年參考題庫附帶答案詳解
- GJB1406A-2021產(chǎn)品質(zhì)量保證大綱要求
- 醫(yī)院培訓(xùn)課件:《高血壓的診療規(guī)范》
- 口腔種植醫(yī)生進(jìn)修匯報
- 特教數(shù)學(xué)教學(xué)課件
- 2025年云南省中考化學(xué)試卷真題(含標(biāo)準(zhǔn)答案及解析)
- 華為干部培訓(xùn)管理制度
- 職業(yè)技術(shù)學(xué)院2024級智能網(wǎng)聯(lián)汽車工程技術(shù)專業(yè)人才培養(yǎng)方案
- 父母贈與協(xié)議書
- 供應(yīng)鏈危機(jī)應(yīng)對預(yù)案
- 3萬噸特高壓及以下鋼芯鋁絞線鋁包鋼芯絞線項目可行性研究報告寫作模板-拿地備案
- 砌筑工技能競賽理論考試題庫(含答案)
評論
0/150
提交評論