難點(diǎn)詳解黑龍江省富錦市中考數(shù)學(xué)真題分類(平行線的證明)匯編定向測評練習(xí)題(含答案詳解)_第1頁
難點(diǎn)詳解黑龍江省富錦市中考數(shù)學(xué)真題分類(平行線的證明)匯編定向測評練習(xí)題(含答案詳解)_第2頁
難點(diǎn)詳解黑龍江省富錦市中考數(shù)學(xué)真題分類(平行線的證明)匯編定向測評練習(xí)題(含答案詳解)_第3頁
難點(diǎn)詳解黑龍江省富錦市中考數(shù)學(xué)真題分類(平行線的證明)匯編定向測評練習(xí)題(含答案詳解)_第4頁
難點(diǎn)詳解黑龍江省富錦市中考數(shù)學(xué)真題分類(平行線的證明)匯編定向測評練習(xí)題(含答案詳解)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省富錦市中考數(shù)學(xué)真題分類(平行線的證明)匯編定向測評考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,點(diǎn)E在的延長線上,下列條件不能判斷的是(

)A. B. C. D.2、將一副三角板的直角頂點(diǎn)重合按如圖放置,小明得到下列結(jié)論:①如果∠2=30°,則AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,則∠2=30°;④如果∠CAD=150°,則∠4=∠C.其中正確的結(jié)論有()A.①② B.①②③ C.①③④ D.①②④3、如圖,將?ABCD沿對角線AC折疊,使點(diǎn)B落在B′處,若∠1=∠2=44°,則∠B為()A.66° B.104° C.114° D.124°4、如圖,直線,則(

).A. B. C. D.5、如圖,,將一副直角三角板作如下擺放,,.下列結(jié)論:①;②;③;④.其中正確的個(gè)數(shù)是(

)A.1 B.2 C.3 D.46、如圖,將沿著平行于的直線折疊,點(diǎn)落在點(diǎn)處,若,則的度數(shù)是(

)A.108° B.104° C.96° D.92°7、如圖,在△ABC中,∠C=90°,點(diǎn)D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°8、如圖,點(diǎn)是中邊上的一點(diǎn),過作,垂足為.若,則是(

)A.直角三角形 B.銳角三角形 C.鈍角三角形 D.無法確定第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,將三角形紙片ABC沿EF折疊,使得A點(diǎn)落在BC上點(diǎn)D處,連接DE,DF,.設(shè),,則α與β之間的數(shù)量關(guān)系是________.2、兩條直線平行的條件(除平行線定義和平行公理推論外):兩條直線被第三條直線所截,如果___________,那么這兩條直線平行.這個(gè)判定方法可簡述為:_________,兩直線平行.3、如圖,,的平分線相交于點(diǎn),的平分線相交于點(diǎn),,的平分線相交于點(diǎn)……以此類推,則的度數(shù)是___________(用含與的代數(shù)式表示).4、如圖,當(dāng)∠ABC,∠C,∠D滿足條件______________時(shí),AB∥ED.5、如圖,若AB⊥BC,BC⊥CD,則直線AB與CD的位置關(guān)系是______.6、如圖,下列條件:①∠1=∠3,②∠2+∠4=180°,③∠4=∠5,④∠2=∠3,⑤∠6=∠2+∠3中能判斷直線的有_________(只填序號).7、如圖a是長方形紙帶,∠DEF=16°,將紙帶沿EF折疊成圖b,再沿BF折疊成圖c,則圖c中的∠CFE的度數(shù)是__.三、解答題(7小題,每小題10分,共計(jì)70分)1、【教材呈現(xiàn)】如圖是華師版七年級下冊數(shù)學(xué)教材第76頁的部分內(nèi)容.請根據(jù)教材提示,結(jié)合圖①,將證明過程補(bǔ)充完整.【結(jié)論應(yīng)用】(1)如圖②,在△中,∠=60°,平分∠,平分∠,求∠的度數(shù).(2)如圖③,將△的∠折疊,使點(diǎn)落在△外的點(diǎn)處,折痕為.若∠=,∠=,∠=,則、、滿足的等量關(guān)系為(用、、的代數(shù)式表示).2、如圖所示,已知BO、CO分別是∠ABC與∠ACB的平分線,DE過O點(diǎn)且與BC平行.(1)若∠ABC=52°,∠ACB=60°,求∠BOC的大小;(2)若∠A=60°,求∠BOC的大?。?3)直接寫出∠A與∠BOC的關(guān)系是∠BOC=.(用∠A表示出來)3、如圖,在△ABC中,∠ABC的平分線BD交∠ACB的平分線CE于點(diǎn)O.(1)求證:.(2)如圖1,若∠A=60°,請直接寫出BE,CD,BC的數(shù)量關(guān)系.(3)如圖2,∠A=90°,F(xiàn)是ED的中點(diǎn),連接FO.①求證:BC?BE?CD=2OF.②延長FO交BC于點(diǎn)G,若OF=2,△DEO的面積為10,直接寫出OG的長.4、已知://.求證://.5、(1)探究:如圖1,求證:;(2)應(yīng)用:如圖2,,,求的度數(shù).

6、如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.(1)CD與EF平行嗎?為什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).7、已知:如圖,點(diǎn)E在線段CD上,EA、EB分別平分∠DAB和∠ABC,∠AEB=90°,設(shè)AD=x,BC=y(tǒng),且(x﹣2)2+|y﹣5|=0.(1)求AD和BC的長.(2)試說線段AD與BC有怎樣的位置關(guān)系?并證明你的結(jié)論.(3)你能求出AB的長嗎?若能,請寫出推理過程,若不能,說明理由.-參考答案-一、單選題1、D【解析】【分析】直接利用平行線的判定方法分別判斷得出答案.【詳解】解:A、當(dāng)∠5=∠B時(shí),AB∥CD,不合題意;B、當(dāng)∠1=∠2時(shí),AB∥CD,不合題意;C、當(dāng)∠B+∠BCD=180°時(shí),AB∥CD,不合題意;D、當(dāng)∠3=∠4時(shí),AD∥CB,符合題意;故選:D.【考點(diǎn)】此題主要考查了平行線的判定,正確掌握平行線的判定方法是解題關(guān)鍵.2、D【解析】【分析】根據(jù)平行線的性質(zhì)和判定和三角形內(nèi)角和定理逐個(gè)判斷即可.【詳解】解:∵∠2=30°,∠CAB=90°,∴∠1=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE,故①正確;∵∠CAB=∠DAE=90°,∴∠BAE+∠CAD=90°-∠1+90°+∠1=180°,故②正確;∵BC∥AD,∠B=45°,∴∠3=∠B=45°,∵∠2+∠3=∠DAE=90°,∴∠2=45°,故③錯(cuò)誤;∵∠CAD=150°,∠BAE+∠CAD=180°,∴∠BAE=30°,∵∠E=60°,∴∠BOE=∠BAE+∠E=90°,∴∠4+∠B=90°,

∵∠B=45°,∴∠4=45°,∵∠C=45°,∴∠4=∠C,故④正確;所以其中正確的結(jié)論有①②④.故選:D.【考點(diǎn)】本題考查了三角形的內(nèi)角和定理和平行線的性質(zhì)和判定,能靈活運(yùn)用定理進(jìn)行推理是解此題的關(guān)鍵.3、C【解析】【分析】根據(jù)平行四邊形性質(zhì)和折疊性質(zhì)得∠BAC=∠ACD=∠B′AC=∠1,再根據(jù)三角形內(nèi)角和定理可得.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠ACD=∠BAC,由折疊的性質(zhì)得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°,故選C.【考點(diǎn)】本題考查了平行四邊形的性質(zhì)、折疊的性質(zhì)、三角形的外角性質(zhì)以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質(zhì),求出∠BAC的度數(shù)是解決問題的關(guān)鍵.4、D【解析】【分析】根據(jù)平行線的性質(zhì)求出∠4,根據(jù)三角形內(nèi)角和定理計(jì)算即可.【詳解】∵a∥b,∴∠4=∠1=60°,∴∠3=180°-∠4-∠2=80°故選:D.【考點(diǎn)】本題考查的是平行線的性質(zhì)、三角形內(nèi)角和定理,掌握兩直線平行,同位角相等是解題的關(guān)鍵.5、D【解析】【分析】由內(nèi)錯(cuò)角相等,兩直線平行可判斷①,由鄰補(bǔ)角的定義可判斷②,如圖,延長交于先求解從而可判斷③④,于是可得答案.【詳解】解:由題意得:故①符合題意;故②符合題意;如圖,延長交于故③④符合題意;綜上:符合題意的有①②③④故選D【考點(diǎn)】本題考查的是三角形的內(nèi)角和定理的應(yīng)用,平行線的判定與性質(zhì),三角形外角的性質(zhì),等腰直角三角形的兩個(gè)銳角都為,掌握以上基礎(chǔ)知識是解本題的關(guān)鍵.6、D【解析】【分析】根據(jù)兩直線平行,同位角相等可得∠ADE=∠B,再根據(jù)翻折變換的性質(zhì)可得∠A′DE=∠ADE,然后根據(jù)平角等于180°列式計(jì)算即可得解.【詳解】解:∵,∴∠ADE=∠B=44°,∵△ABC沿著平行于BC的直線折疊,點(diǎn)A落到點(diǎn)A′,∴∠A′DE=∠ADE=44°,∴∠A′DB=180°﹣44°﹣44°=92°.故選:D.【考點(diǎn)】本題考查了平行線的性質(zhì),翻折變換的性質(zhì),三角形的內(nèi)角和定理,熟記性質(zhì)并準(zhǔn)確識圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.7、D【解析】【分析】根據(jù)鄰補(bǔ)角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點(diǎn)】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.8、A【解析】【分析】先求解再證明可得從而可得結(jié)論.【詳解】解:是直角三角形.故選A【考點(diǎn)】本題考查的是垂直的定義,三角形的內(nèi)角和定理的應(yīng)用,掌握“三角形的內(nèi)角和定理”是解本題的關(guān)鍵.二、填空題1、【解析】【分析】由折疊的性質(zhì)可知:,再利用三角形內(nèi)角和定理及角之間的關(guān)系證明,,即可找出α與β之間的數(shù)量關(guān)系.【詳解】解:由折疊的性質(zhì)可知:,∵,∴,∴,∵,,∴,∴,故答案為:.【考點(diǎn)】本題考查折疊的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵是根據(jù)折疊的性質(zhì)求出,根據(jù)角之間的關(guān)系求出,.2、

同位角相等(答案不唯一)

同位角相等(答案不唯一)【解析】【分析】根據(jù)平行線的判定定理解答即可.【詳解】兩條直線平行的條件(除平行線定義和平行公理推論外):兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行.這個(gè)判定方法可簡述為:同位角相等,兩直線平行.故答案為:同位角相等,同位角相等.【考點(diǎn)】本題主要考查平行線的判定定理,屬于基礎(chǔ)題,熟練掌握平行線的判定定理是解題關(guān)鍵.3、【解析】【分析】由∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,而P1B、P1C分別平分∠ABC和∠ACD,得到∠ACD=2∠P1CD,∠ABC=2∠P1BC,于是有∠A=2∠P1,同理可得∠P1=2∠P2,即∠A=22∠P2,因此找出規(guī)律.【詳解】∵P1B、P1C分別平分∠ABC和∠ACD,∴∠ACD=2∠P1CD,∠ABC=2∠P1BC,而∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,∴∠A=2∠P1,∴∠P1=∠A,同理可得∠P1=2∠P2,即∠A=22∠P2,∴∠A=2n∠Pn,∴∠Pn=.故答案為:.【考點(diǎn)】本題考查了三角形的內(nèi)角和定理:三角形的內(nèi)角和為180°.也考查了三角形的外角性質(zhì)以及角平分線性質(zhì),難度適中.4、∠ABC=∠C+∠D【解析】【分析】延長CB交DE于F,根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠EFB=∠C+∠D,再根據(jù)同位角相等,兩直線平行解答即可.【詳解】如圖,延長CB交DE于F,則∠EFB=∠C+∠D,當(dāng)∠ABC=∠EFB時(shí),AB∥ED,所以,當(dāng)∠ABC=∠C+∠D時(shí),AB∥ED.故答案為∠ABC=∠C+∠D.【考點(diǎn)】本題考查了平行線的判定,作輔助線,把∠C、∠D轉(zhuǎn)化為一個(gè)角的度數(shù)是解題的關(guān)鍵.5、AB∥CD【解析】【詳解】∵AB⊥BC,BC⊥CD,∴∠ABC=∠BCD=90°,∴AB∥CD,故答案為AB∥CD.6、①②③⑤【解析】【詳解】分析:根據(jù)平行線的判定定理對各小題進(jìn)行逐一判斷即可.詳解:①∵∠1=∠3,∴l(xiāng)1∥l2,故本小題正確;②∵,∴l(xiāng)1∥l2,故本小題正確;③∵∠4=∠5,∴l(xiāng)1∥l2,故本小題正確;④∠2=∠3不能判定l1∥l2,故本小題錯(cuò)誤;⑤∵∠6=∠2+∠3,∴l(xiāng)1∥l2,故本小題正確.故答案為①②③⑤點(diǎn)睛:考查平行線的判定,掌握判定方法是解題的關(guān)鍵.7、132°##132度【解析】【分析】先由矩形的性質(zhì)得出∠BFE=∠DEF=16°,再根據(jù)折疊的性質(zhì)得出∠CFG=180°﹣2∠BFE,由∠CFE=∠CFG﹣∠EFG即可得出答案.【詳解】解:∵四邊形ABCD是矩形,∴AD∥BC,∴∠BFE=∠DEF=16°,∴∠CFE=∠CFG﹣∠EFG=180°﹣2∠BFE﹣∠EFG=180°﹣3×16°=132°,故答案為:132°.【考點(diǎn)】本題考查了翻折變換的性質(zhì)、矩形的性質(zhì)、平行線的性質(zhì);熟練掌握翻折變換和矩形的性質(zhì),弄清各個(gè)角之間的關(guān)系是解決問題的關(guān)鍵.三、解答題1、教材呈現(xiàn):見解析;(1)120°;(2)【解析】【分析】【教材呈現(xiàn)】利用兩直線平行,同位角相等,內(nèi)錯(cuò)角相等,把三角形三個(gè)內(nèi)角轉(zhuǎn)化成一個(gè)平角,從而得證.【結(jié)論應(yīng)用】(1)利用角平分線的性質(zhì)得出兩個(gè)底角之和,從而求出∠P度數(shù).(2)根據(jù)四邊形BCFD內(nèi)角和為360°,分別表示出各角得出等式即可.【詳解】解:教材呈現(xiàn):∵CD∥BA,∴∠1=∠ACD.∵∠3+∠ACD+∠DCE=180°,,∴.結(jié)論應(yīng)用:(1)∵BP平分,CP平分,∴,.∵,,∴.∵,∴.(2)∵,∴,在△ABC中,,又四邊形BCDF內(nèi)角和為360°,∴,∴.【考點(diǎn)】本題考查平行線的性質(zhì),角平分線的定義,三角形內(nèi)角和定理,翻折等知識,根據(jù)翻折前后對應(yīng)角相等時(shí)解題的關(guān)鍵.2、(1)124°(2)120°(3)90°+【解析】【分析】(1)根據(jù)角平分線定義求出∠OBC=,∠OCB=,然后利用三角形內(nèi)角和公式求解即可;(2)根據(jù)∠A=60°,結(jié)合三角形內(nèi)角和得出∠ABC+∠ACB=180°-∠A=120°,然后根據(jù)角平分線得出∠OBC=,∠OCB=,再利用三角形內(nèi)角和得出∠BOC=180°-∠OBC-∠OCB=180°-即可;(3)先根據(jù)平分線定義得出∠OBC=,∠OCB=,然后根據(jù)三角形內(nèi)角和公式得出∠BOC=180°-,再利用∠A表示即可.(1)解:∵BO、CO分別是∠ABC與∠ACB的平分線,∴∠OBC=,∠OCB=,∴∠BOC=180°-∠OBC-∠OCB=180°-26°-30°=124°;(2)解:∵∠A=60°,∴∠ABC+∠ACB=180°-∠A=120°,∵BO、CO分別是∠ABC與∠ACB的平分線,∴∠OBC=,∠OCB=,∴∠BOC=180°-∠OBC-∠OCB=180°--=180°-,=180°-60°=120°;(3)解:∠BOC=90°+.∵BO、CO分別是∠ABC與∠ACB的平分線,∴∠OBC=,∠OCB=,∴∠BOC=180°-∠OBC-∠OCB=180°--=180°-=180°-=90°+.故答案為:90°+.【考點(diǎn)】本題考查三角形內(nèi)角和公式,角平分線定義,熟練掌握三角形內(nèi)角和公式,角平分線定義是解題關(guān)鍵.3、(1)見解析(2)BE+CD=BC,(3)①見解析;②【解析】【分析】(1)先根據(jù)三角形內(nèi)角和得:∠BOC=180°?(∠OBC+∠OCB),由角平分線定義得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形內(nèi)角和可得結(jié)論;(2)在BC上截取BM=BE,證明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再證明△DCO≌△MCO可得結(jié)論;(3)①延長OF到點(diǎn)M,使MF=OF,證明△ODF≌△MEF(SAS),推出OD=EM.過點(diǎn)O作CE,BD的垂線,證明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=EM,BE=BK,CD=CH.據(jù)此即可證明結(jié)論;②利用①的結(jié)論以及三角形面積公式即可求解.(1)證明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°?(∠OBC+∠OCB)=180°?(∠ABC+∠ACB)=180°?(180°?∠A)=∠A+90°;(2)解:BE+CD=BC.在BC上截取BM=BE,連接OM,如圖:∵∠BOC=∠A+90°=120°,∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴△BOE≌△BOM,∴∠BOE=∠BOM=60°,∴∠MOC=∠DOC=60°,∵OC為∠DCM的角平分線,∴∠DCO=∠MCO,在△DCO與△MCO中,,∴△DCO≌△MCO(ASA),∴CM=CD,∴BC=BM+CM=BE+CD;(3)①證明:如圖,延長OF到點(diǎn)M,使MF=OF,連接EM,∴OM=2OF.∵F是ED的中點(diǎn),∴EF=DF,∵∠DFO=∠EFM,∴△ODF≌△MEF(SAS),∴OD=EM.過點(diǎn)O作CE,BD的垂線,分別交BC于點(diǎn)K,H,∴∠OCK+∠OKC=90°.∵∠A=90°,∴∠ACE+∠AEC=90°∵∠ACE=∠OCK,∴∠AEO=∠OKC,∴∠BEO=∠BKO,∴△OBE≌△OBK(AAS),同理可得△ODC≌△OHC,∴EO=OK,OD=OH=EM,BE=BK,CD=CH.由(1)可知∠DOE=∠BOC=×90°+90°=135°,∴∠BOE=∠COD=45°,∴∠OEM=∠KOH=45°,∴△OME≌△KHO,∴KH=OM,∴KH=2OF.∵BC?BK?CH=KH=2OE,∴BC?BE?CD=KH=2OF;②解:∵△OME≌△KHO,∴∠EOM=∠OKH,∴FG⊥BC.由①可知KH=2OF=4,△ODF≌△MEF,∴S△DEO=S△OME=S△KHO=10,∴KH×OG×=10,∴OG=5.【考點(diǎn)】本題考查了角平分線的定義、三角形內(nèi)角和定理、三角形全等的性質(zhì)和判定.解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題.4、見解析【解析】【分析】根據(jù),得到∠A=∠C,然后推出AF=CE,即可證明△ABF≌△CDE得到∠AFB=∠CED,則.【詳解】解:∵,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴∠AFB=∠CED,∴.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì)與判定,平行線的性質(zhì)與判定,熟知全等三角形的性質(zhì)與判定條件是解題的關(guān)鍵.5、230°【解析】【分析】(1)連接OA并延長,由三角形外角的性質(zhì)可知∠1+∠B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論