版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
排列組合二項式定理復習排列、組合、二項式定理知識結(jié)構(gòu)網(wǎng)絡(luò)圖:排列與組合二項式定理基本原理排列組合排列數(shù)公式組合數(shù)公式組合數(shù)的兩個性質(zhì)二項式定理二項式系數(shù)的性質(zhì)基礎(chǔ)練習2021/7/1721、分類加法計數(shù)原理:完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法……在第n類辦法中有mn種不同的方法.那么完成這件事共有種不同的方法.2、分步乘法計數(shù)原理:完成一件事,需要分成n個步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法……,做第n步有mn種不同的方法.那么完成這件事共有種不同的方法.兩個計數(shù)原理2021/7/173分類計數(shù)原理分步計數(shù)原理完成一件事,共有n類辦法,關(guān)鍵詞“分類”區(qū)別1完成一件事,共分n個步驟,關(guān)鍵詞“分步”區(qū)別2區(qū)別3每類辦法都能獨立地完成這件事情,它是獨立的、一次的、且每次得到的是最后結(jié)果,只須一種方法就可完成這件事。每一步得到的只是中間結(jié)果,任何一步都不能獨立完成這件事,缺少任何一步也不能完成這件事,只有各個步驟都完成了,才能完成這件事。各類辦法是互相獨立的。各步之間是互相關(guān)聯(lián)的。2021/7/174例1某校組織學生分4個組從3處風景點中選一處去春游,則不同的春游方案的種數(shù)是A.B.C.D.C2021/7/1751.2:排列與組合排列:一般地,從n個不同元素中取出m(m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列。排列數(shù):從n個不同元素中取出m(m≤n)個元素的所有不同排列的個數(shù)叫做從n個不同元素中取出m個元素的排列數(shù)。用符號表示.排列數(shù)公式:其中:2021/7/1761.2:排列與組合組合:一般地,從n個不同元素中取出m(m≤n)個元素合成一組,叫做從n個不同元素中取出m個元素的一個組合。組合數(shù):從n個不同元素中取出m(m≤n)個元素的所有不同組合的個數(shù)叫做從n個不同元素中取出m個元素的組合數(shù)。用符號表示.組合數(shù)公式:其中:2021/7/177組合數(shù)性質(zhì):判斷一個具體問題是否為組合問題,關(guān)鍵是看取出的元素是否與順序有關(guān),有關(guān)就是排列,無關(guān)便是組合.判斷時要弄清楚“事件是什么”.2021/7/178排列和組合的區(qū)別和聯(lián)系:名稱排列組合一個~~~數(shù)符號種數(shù)公式關(guān)系性質(zhì),從n個不同元素中取出m個元素,按一定的順序排成一列從n個不同元素中取出m個元素,把它并成一組所有排列的的個數(shù)所有組合的個數(shù)全排列:n個不同元素全部取出的一個排列.全排列數(shù)公式:所有全排列的個數(shù),即:2021/7/179排列組合應(yīng)用題的常用方法1、基本原理法2、特殊優(yōu)先法3、捆綁法4、插空法
5、間接法6、窮舉法
7、隔板法三大原則1、先特殊后一般2、先取后排3、先分類后分步2021/7/1710混合問題,先“組”后“排”例2:對某種產(chǎn)品的6件不同的正品和4件不同的次品,一一進行測試,至區(qū)分出所有次品為止,若所有次品恰好在第5次測試時全部發(fā)現(xiàn),則這樣的測試方法有種可能?解:由題意知前5次測試恰有4次測到次品,且第5次測試是次品。故有:種可能。2021/7/1711練習:1、某學習小組有5個男生3個女生,從中選3名男生和1名女生參加三項競賽活動,每項活動至少有1人參加,則有不同參賽方法______種.解:采用先組后排方法:2、3名醫(yī)生和6名護士被分配到3所學校為學生體檢,每校分配1名醫(yī)生和2名護士,不同的分配方法共有多少種解:依次確定到第一、第二、第三所學校去的醫(yī)生和護士.2021/7/1712這個公式表示的定理叫做二項式定理,公式右邊的多項式叫做(a+b)n的
,其中(r=0,1,2,……,n)叫做
,
叫做二項展開式的通項,用Tr+1
表示,該項是指展開式的第
項,展開式共有_____個項.展開式二項式系數(shù)r+1n+1二項式定理
2021/7/1713
一般地,展開式的二項式系數(shù)有如下性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療反腐財務(wù)制度
- 鄉(xiāng)鎮(zhèn)衛(wèi)生院津貼發(fā)放制度
- 衛(wèi)生院慢病分級診療制度
- 互聯(lián)網(wǎng)運營崗前培訓制度
- 村級財務(wù)制度細則
- 金沙居物業(yè)公司財務(wù)制度
- 旅社場所衛(wèi)生管理制度
- 地毯保潔衛(wèi)生管理制度
- 公司用餐衛(wèi)生制度
- 炊事人員衛(wèi)生管理制度
- 單杠引體向上教學課件
- 高級消防設(shè)施操作員試題及答案-1
- 2025年海南省政府采購評審專家考試題庫(含答案)
- 綿陽普通話考試題目含答案
- 國企財務(wù)審批管理辦法
- 新型農(nóng)業(yè)經(jīng)營主體法律制度完善研究
- 高中國際班數(shù)學試卷
- 北京市2019-2024年中考滿分作文131篇
- 2024-2025學年湖北省武漢市常青聯(lián)合體高二上學期期末考試語文試題(解析版)
- xx中學十五五發(fā)展規(guī)劃(2025-2030)
- 快遞保證金合同協(xié)議
評論
0/150
提交評論