難點解析滬科版9年級下冊期末試題(綜合卷)附答案詳解_第1頁
難點解析滬科版9年級下冊期末試題(綜合卷)附答案詳解_第2頁
難點解析滬科版9年級下冊期末試題(綜合卷)附答案詳解_第3頁
難點解析滬科版9年級下冊期末試題(綜合卷)附答案詳解_第4頁
難點解析滬科版9年級下冊期末試題(綜合卷)附答案詳解_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列語句判斷正確的是()A.等邊三角形是軸對稱圖形,但不是中心對稱圖形B.等邊三角形既是軸對稱圖形,又是中心對稱圖形C.等邊三角形是中心對稱圖形,但不是軸對稱圖形D.等邊三角形既不是軸對稱圖形,也不是中心對稱圖形2、如圖,AB,CD是⊙O的弦,且,若,則的度數(shù)為()A.30° B.40° C.45° D.60°3、如圖,圓形螺帽的內(nèi)接正六邊形的面積為24cm2,則圓形螺帽的半徑是()A.1cm B.2cm C.2cm D.4cm4、已知⊙O的半徑為4,,則點A在()A.⊙O內(nèi) B.⊙O上 C.⊙O外 D.無法確定5、下列說法錯誤的是()A.必然事件發(fā)生的概率是1 B.不可能事件發(fā)生的概率為0C.隨機事件發(fā)生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能發(fā)生6、7個小正方體按如圖所示的方式擺放,則這個圖形的左視圖是()A.B. C.D.7、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點,連接,將線段繞點B逆時針旋轉(zhuǎn)得到,連接.則在點M運動過程中,線段長度的最小值是()A. B.1 C.2 D.8、下列說法正確的是()A.?dāng)S一枚質(zhì)地均勻的骰子,擲得的點數(shù)為3的概率是.B.若AC、BD為菱形ABCD的對角線,則的概率為1.C.概率很小的事件不可能發(fā)生.D.通過少量重復(fù)試驗,可以用頻率估計概率.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,正方形ABCD的邊長為1,⊙O經(jīng)過點C,CM為⊙O的直徑,且CM=1.過點M作⊙O的切線分別交邊AB,AD于點G,H.BD與CG,CH分別交于點E,F(xiàn),⊙O繞點C在平面內(nèi)旋轉(zhuǎn)(始終保持圓心O在正方形ABCD內(nèi)部).給出下列四個結(jié)論:①HD=2BG;②∠GCH=45°;③H,F(xiàn),E,G四點在同一個圓上;④四邊形CGAH面積的最大值為2.其中正確的結(jié)論有_____(填寫所有正確結(jié)論的序號).2、數(shù)學(xué)興趣活動課上,小方將等腰的底邊BC與直線l重合,問:(1)如圖(1)已知,,點P在BC邊所在的直線l上移動,小方發(fā)現(xiàn)AP的最小值是______;(2)如圖(2)在直角中,,,,點D是CB邊上的動點,連接AD,將線段AD順時針旋轉(zhuǎn)60°,得到線段AP,連接CP,線段CP的最小值是______.3、如圖所示,AB是⊙O的直徑,弦CD⊥AB于H,∠A=30°,OH=1,則⊙O的半徑是______.4、在Rt△ABC中,∠ACB=90°,AC=AB,點E、F分別是邊CA、CB的中點,已知點P在線段EF上,聯(lián)結(jié)AP,將線段AP繞點P逆時針旋轉(zhuǎn)90°得到線段DP,如果點P、D、C在同一直線上,那么tan∠CAP=_______.5、在平面直角坐標(biāo)系中,點,圓C與x軸相切于點A,過A作一條直線與圓交于A,B兩點,AB中點為M,則OM的最大值為______.6、某農(nóng)科所為了深入踐行“綠水青山就是金山銀山”的理念,大力開展對植物生長的研究,該農(nóng)科所在相同條件下做某植物種子發(fā)芽率的試驗,得到的結(jié)果如下表所示:種子個數(shù)1002003004005006007008009001000…發(fā)芽種子個數(shù)94188281349435531625719812902…發(fā)芽種子頻率(結(jié)果保留兩位小數(shù))0.940.940.940.870.870.890.890.900.900.90…根據(jù)頻率的穩(wěn)定性,估計這種植物種子不發(fā)芽的概率是______.7、如圖,過⊙O外一點P,作射線PA,PB分別切⊙O于點A,B,,點C在劣弧AB上,過點C作⊙O的切線分別與PA,PB交于點D,E.則______度.三、解答題(7小題,每小題0分,共計0分)1、如圖,在中,,,D是邊BC上一點,作射線AD,滿足,在射線AD取一點E,且.將線段AE繞點A逆時針旋轉(zhuǎn)90°,得到線段AF,連接BE,F(xiàn)E,連接FC并延長交BE于點G.(1)依題意補全圖形;(2)求的度數(shù);(3)連接GA,用等式表示線段GA,GB,GC之間的數(shù)量關(guān)系,并證明.2、在平面直角坐標(biāo)系xOy中,的半徑為2.點P,Q為外兩點,給出如下定義:若上存在點M,N,使得P,Q,M,N為頂點的四邊形為矩形,則稱點P,Q是的“成對關(guān)聯(lián)點”.(1)如圖,點A,B,C,D橫、縱坐標(biāo)都是整數(shù).在點B,C,D中,與點A組成的“成對關(guān)聯(lián)點”的點是______;(2)點在第一象限,點F與點E關(guān)于x軸對稱.若點E,F(xiàn)是的“成對關(guān)聯(lián)點”,直接寫出t的取值范圍;(3)點G在y軸上.若直線上存在點H,使得點G,H是的“成對關(guān)聯(lián)點”,直接寫出點G的縱坐標(biāo)的取值范圍.3、在同樣的條件下對某種小麥種子進(jìn)行發(fā)芽試驗,統(tǒng)計發(fā)芽種子數(shù),獲得如下頻數(shù)表.實驗種植數(shù)(粒)1550100200500100020003000發(fā)芽頻數(shù)04459218847695119002850(1)估計該麥種的發(fā)芽概率.(2)如果播種該種小麥每公頃所需麥苗數(shù)為4000000棵,種子發(fā)芽后的成秧率為80%,該麥種的千粒質(zhì)量為50g.那么播種3公頃該種小麥,估計約需麥種多少千克(精確到1kg)?4、一張圓桌旁設(shè)有4個座位,丙先坐在了如圖所示的座位上,甲、乙、丁3人等可能地坐到①、②、③中的3個座位上.(1)甲坐在①號座位的概率是;(2)用畫樹狀圖或列表的方法,求甲與乙相鄰而坐的概率.5、在正方形ABCD中,過點B作直線l,點E在直線l上,連接CE,DE,其中,過點C作于點F,交直線l于點H.(1)當(dāng)直線l在如圖①的位置時①請直接寫出與之間的數(shù)量關(guān)系______.②請直接寫出線段BH,EH,CH之間的數(shù)量關(guān)系______.(2)當(dāng)直線l在如圖②的位置時,請寫出線段BH,EH,CH之間的數(shù)量關(guān)系并證明;(3)已知,在直線l旋轉(zhuǎn)過程中當(dāng)時,請直接寫出EH的長.6、如圖,在⊙O中,點E是弦CD的中點,過點O,E作直徑AB(AE>BE),連接BD,過點C作CFBD交AB于點G,交⊙O于點F,連接AF.求證:AG=AF.7、解題與遐想.如圖,Rt△ABC的內(nèi)切圓與斜邊AB相切于點D,AD=4,BD=5.求Rt△ABC的面積.王小明:這道題算出來面積剛好是20,太湊巧了吧.剛好是4×5=20,有種白算的感覺…趙麗華:我把4和5換成m、n再算一遍,△ABC的面積總是m?n!確實非常神奇了…數(shù)學(xué)劉老師:大家想一想,既然結(jié)果如此簡單到極致,不計算能不能得到呢?比如,拼圖?霍佳:劉老師,我在想另一個東西,這個圖能不能尺規(guī)畫出來啊感覺圖都定了.我怎么想不出來呢?計算驗證(1)通過計算求出Rt△ABC的面積.拼圖演繹(2)將Rt△ABC分割放入矩形中(左圖),通過拼圖能直接“看”出“20”請在圖中畫出拼圖后的4個直角三角形甲、乙、丙、丁的位置,作必要標(biāo)注并簡要說明.尺規(guī)作圖(3)尺規(guī)作圖:如圖,點D在線段AB上,以AB為斜邊求作一個Rt△ABC,使它的內(nèi)切圓與斜邊AB相切于點D.(保留作圖的痕跡,寫出必要的文字說明)-參考答案-一、單選題1、A【分析】根據(jù)等邊三角形的對稱性判斷即可.【詳解】∵等邊三角形是軸對稱圖形,但不是中心對稱圖形,∴B,C,D都不符合題意;故選:A.【點睛】本題考查了等邊三角形的對稱性,熟練掌握等邊三角形的對稱性是解題的關(guān)鍵.2、B【分析】由同弧所對的圓周角是圓心角的一半可得,利用平行線的性質(zhì):兩直線平行,內(nèi)錯角相等即可得.【詳解】解:∵,∴,∵,∴,故選:B.【點睛】題目主要考查圓周角定理,平行線的性質(zhì)等,理解題意,找出相關(guān)的角度是解題關(guān)鍵.3、D【分析】根據(jù)圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,由面積公式可求出半徑.【詳解】解:如圖,由圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,過作于設(shè)半徑為r,即OA=OB=AB=r,OM=OA?sin∠OAB=,∵圓O的內(nèi)接正六邊形的面積為(cm2),∴△AOB的面積為(cm2),即,,解得r=4,故選:D.【點睛】本題考查正多邊形和圓,作邊心距轉(zhuǎn)化為直角三角形的問題是解決問題的關(guān)鍵.4、C【分析】根據(jù)⊙O的半徑r=4,且點A到圓心O的距離d=5知d>r,據(jù)此可得答案.【詳解】解:∵⊙O的半徑r=4,且點A到圓心O的距離d=5,∴d>r,∴點A在⊙O外,故選:C.【點睛】本題主要考查點與圓的位置關(guān)系,點與圓的位置關(guān)系有3種.設(shè)⊙O的半徑為r,點P到圓心的距離OP=d,則有:①點P在圓外?d>r;②點P在圓上?d=r;③點P在圓內(nèi)?d<r.5、D【分析】根據(jù)概率的意義分別判斷后即可確定正確的選項.【詳解】解:A.必然事件發(fā)生的概率是1,故該選項正確,不符合題意;B.不可能事件發(fā)生的概率是0,故該選項正確,不符合題意;C.隨機事件發(fā)生的可能性越大,它的概率就越接近1,故該選項正確,不符合題意;D.概率很小的事件也可能發(fā)生,故該選項不正確,符合題意;故選D【點睛】本題考查概率的意義,理解概率的意義反映的只是這一事件發(fā)生的可能性的大?。罕厝话l(fā)生的事件發(fā)生的概率為1,隨機事件發(fā)生的概率大于0且小于1,不可能事件發(fā)生的概率為0.6、C【分析】細(xì)心觀察圖中幾何體擺放的位置,根據(jù)左視圖是從左面看到的圖象判定則可.【詳解】解:從左邊看,是左邊3個正方形,右邊一個正方形.故選:C.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.7、A【分析】取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵M(jìn)B旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點.8、B【分析】概率是指事情發(fā)生的可能性,等可能發(fā)生的事件的概率相同,小概率事件是指發(fā)生的概率比較小,不代表不會發(fā)生,通過大量重復(fù)試驗才能用頻率估計概率,利用這些對四個選項一次判斷即可.【詳解】A項:擲一枚質(zhì)地均勻的骰子,每個面朝上的概率都是一樣的都是,故A錯誤,不符合題意;B項:若AC、BD為菱形ABCD的對角線,由菱形的性質(zhì):對角線相互垂直平分得知兩條線段一定垂直,則AC⊥BD的概率為1是正確的,故B正確,符合題意;C項:概率很小的事件只是發(fā)生的概率很小,不代表不會發(fā)生,故C錯誤,不符合題意;D項:通過大量重復(fù)試驗才能用頻率估計概率,故D錯誤,不符合題意.故選B【點睛】本題考查概率的命題真假,準(zhǔn)確理解事務(wù)發(fā)生的概率是本題關(guān)鍵.二、填空題1、②③④【分析】根據(jù)切線的性質(zhì),正方形的性質(zhì),通過三角形全等,證明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判斷前兩個結(jié)論;運用對角互補的四邊形內(nèi)接于圓,證明∠GHF+∠GEF=180°,取GH的中點P,連接PA,則PA+PC≥AC,當(dāng)PC最大時,PA最小,根據(jù)直徑是圓中最大的弦,故PC=1時,PA最小,計算即可.【詳解】∵GH是⊙O的切線,M為切點,且CM是⊙O的直徑,∴∠CMH=90°,∵四邊形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可證,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,無法確定HD=2BG,故①錯誤;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正確;∵△CMH≌△CDH,BD是正方形的對角線,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根據(jù)對角互補的四邊形內(nèi)接于圓,∴H,F(xiàn),E,G四點在同一個圓上,故③正確;∵正方形ABCD的邊長為1,∴=1=,∠GAH=90°,AC=取GH的中點P,連接PA,∴GH=2PA,∴=,∴當(dāng)PA取最小值時,有最大值,連接PC,AC,則PA+PC≥AC,∴PA≥AC-PC,∴當(dāng)PC最大時,PA最小,∵直徑是圓中最大的弦,∴PC=1時,PA最小,∴當(dāng)A,P,C三點共線時,且PC最大時,PA最小,∴PA=-1,∴最大值為:1-(-1)=2-,∴四邊形CGAH面積的最大值為2,∴④正確;故答案為:②③④.【點睛】本題考查了切線的性質(zhì),直徑是最大的弦,三角形的全等,直角三角形斜邊上的中線,四點共圓,正方形的性質(zhì),熟練掌握圓的性質(zhì),靈活運用直角三角形的性質(zhì),線段最短原理是解題的關(guān)鍵.2、105【分析】(1)如圖,作AH⊥BC于H.根據(jù)垂線段最短,求出AH即可解決問題.(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC時,KD的值最小,求出KD的最小值即可解決問題.【詳解】解:如圖作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根據(jù)垂線段最短可知,當(dāng)AP與AH重合時,PA的值最小,最小值為10.∴AP的最小值是10;(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC時,KD的值最小,∵,是等邊三角形,∴,∴PC的最小值為5.【點睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),垂線段最短,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題.3、2【分析】連接OC,利用半徑相等以及三角形的外角性質(zhì)求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性質(zhì)即可求解.【詳解】解:連接OC,∵OA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CD⊥AB于H,∴∠OHC=90°,∴∠OCH=30°,∵OH=1,∴OC=2OH=2,故答案為:2.【點睛】本題考查了垂徑定理和含30°角的直角三角形的性質(zhì).熟練掌握垂徑定理是解題的關(guān)鍵.4、【分析】①如圖1所示,由題意知,EF為△ABC的中位線,∠EFC=∠ABC=45°,∠PAO=45°,∠PAO=∠OFH,∠POA=∠FOH,∠H=∠APO,在Rt△APC中,EA=EC,有PE=EA=EC,∠EPA=∠EAP=∠BAH,∠H=∠BAH,BH=BA,∠ADP=∠BDC=45°,∠ADB=90°,知BD⊥AH,∠DBA=∠DBC=22.5°,∠ADB=∠ACB=90°,有A,D,C,B四點共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∠DAC=∠DCA=22.5°,知DA=DC,設(shè)AD=a,則DC=AD=a,PD=a=AP,tan∠CAP==計算求解即可;②如圖2所示,當(dāng)點P在線段CD上時,同理可證:DA=DC,設(shè)AD=a,則CD=AD=a,PD=,PC=a﹣a,tan∠CAP=,計算求解即可,而情形2滿足要求.【詳解】解:①如圖1,當(dāng)點D在線段PC上時,延長AD交BC的延長線于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四點共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,設(shè)AD=a,則DC=AD=a,PD=a=AP,∴tan∠CAP===+1;②如圖2中,當(dāng)點P在線段CD上時,同理可證:DA=DC,設(shè)AD=a,則CD=AD=a,PD=∴PC=a﹣a,∴tan∠CAP===,∵點P在線段EF上,∴情形1不滿足條件,情形2滿足條件;故答案為:﹣1.【點睛】本題考查了中位線,等腰三角形的判定與性質(zhì),旋轉(zhuǎn),直角三角形斜邊上中線的性質(zhì),正切函數(shù)等知識點.解題的關(guān)鍵在于表示出正切中線段的長度.5、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點,先求出A點坐標(biāo),從而可證OM是△ABD的中位線,得到,則當(dāng)BD最小時,OM也最小,即當(dāng)B運動到時,BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點∵點C的坐標(biāo)為(2,2),圓C與x軸相切于點A,∴點A的坐標(biāo)為(2,0),∴OA=OD=2,即O是AD的中點,又∵M(jìn)是AB的中點,∴OM是△ABD的中位線,∴,∴當(dāng)BD最小時,OM也最小,∴當(dāng)B運動到時,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點睛】本題主要考查了坐標(biāo)與圖形,一點到圓上一點的距離得到最小值,兩點距離公式,三角形中位線定理,把求出OM的最小值轉(zhuǎn)換成求BD的最小值是解題的關(guān)鍵.6、0.1【分析】大量重復(fù)試驗下“發(fā)芽種子”的頻率可以估計“發(fā)芽種子”的概率,據(jù)此求解.【詳解】觀察表格發(fā)現(xiàn)隨著實驗次數(shù)的增多頻率逐漸穩(wěn)定在0.9附近,故“發(fā)芽種子”的概率估計值為0.9.∴這種植物種子不發(fā)芽的概率是0.1.故答案為:0.1.【點睛】本題考查了利用頻率估計概率的知識,解題的關(guān)鍵是了解大量重復(fù)試驗中某個事件發(fā)生的頻率能估計概率.7、65【分析】連接OA,OC,OB,根據(jù)四邊形內(nèi)角和可得,依據(jù)切線的性質(zhì)及角平分線的判定定理可得DO平分,EO平分,再由各角之間的數(shù)量關(guān)系可得,,根據(jù)等量代換可得,代入求解即可.【詳解】解:如圖所示:連接OA,OC,OB,∵PA、PB、DE與圓相切于點A、B、E,∴,,,∵,∴,∵,∴DO平分,EO平分,∴,,∴,,∴,故答案為:65.【點睛】題目主要考查圓的切線的性質(zhì),角平分線的判定和性質(zhì),四邊形內(nèi)角和等,理解題意,作出相應(yīng)輔助線,綜合運用這些知識點是解題關(guān)鍵.三、解答題1、(1)見解析;(2)(3)【分析】(1)根據(jù)題意補全圖形即可;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得,,進(jìn)而證明,可得,根據(jù)角度的轉(zhuǎn)換可得,進(jìn)而根據(jù)三角形的外角性質(zhì)即可證明;(3)過點作,證明,進(jìn)而根據(jù)勾股定理以及線段的轉(zhuǎn)換即可得到(1)如圖,(2)將線段AE繞點A逆時針旋轉(zhuǎn)90°,得到線段AF,,,又即(3)證明如下,如圖,過點作,又,又,即【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),三角形全等的性質(zhì)與判定,勾股定理,等腰三角形的性質(zhì),掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.2、(1)B和C;(2);(3)【分析】(1)根據(jù)圖形可確定與點A組成的“成對關(guān)聯(lián)點”的點;(2)如圖,點E在直線上,點F在直線上,當(dāng)點E在線段上,點F在線段上時,有的“成對關(guān)聯(lián)點”,求出即可得出的取值范圍;(3)分類討論:點G在上,點G在的下方和點G在的上方,構(gòu)造的“成對關(guān)聯(lián)點”,即可求出的取值范圍.【詳解】(1)如圖所示:在點B,C,D中,與點A組成的“成對關(guān)聯(lián)點”的點是B和C,故答案為:B和C;(2)∵∴在直線上,∵點F與點E關(guān)于x軸對稱,∴在直線,如下圖所示:直線和與分別交于點,,與直線分別交于,,由題可得:,當(dāng)點E在線段上時,有的“成對關(guān)聯(lián)點”∴;(3)如圖,當(dāng)點G在上時,軸,在上不存在這樣的矩形;如圖,當(dāng)點G在下方時,也不存在這樣的矩形;如圖,當(dāng)點G在上方時,存在這樣的矩形GMNH,當(dāng)恰好只能構(gòu)成一個矩形時,設(shè),直線與y軸相交于點K,則,,,,,∴,即,∴,解得:或(舍),綜上:當(dāng)時,點G,H是的“成對關(guān)聯(lián)點”.【點睛】本題考查幾何圖形綜合問題,屬于中考壓軸題,掌握“成對關(guān)聯(lián)點”的定義是解題的關(guān)鍵.3、(1)該麥種的發(fā)芽概率約為95%;(2)約需麥種790千克【分析】(1)利用頻率估計麥種的發(fā)芽率,大數(shù)次實驗,當(dāng)頻率固定到一個穩(wěn)定值時,可根據(jù)頻率公式=頻數(shù)÷總數(shù)計算即可;(2)設(shè)約需麥種x千克,根據(jù)x千克轉(zhuǎn)化為克×1000,再轉(zhuǎn)為顆?!?0×1000,根據(jù)發(fā)芽率再×95%,根據(jù)芽轉(zhuǎn)苗再×80%,等于三公頃地需要的苗總數(shù),例方程x×1000÷50×1000×95%×80%=4000000×3,解方程即可(1)解:根據(jù)實驗數(shù)量變大,發(fā)芽數(shù)也在增大,2850÷3000×100%=95%,故該麥種的發(fā)芽概率約為95%;(2)解:設(shè)約需麥種x千克,x×1000÷50×1000×95%×80%=4000000×3,化簡得15200x=12000000,解得x=789,答:約需麥種790千克【點睛】本題考查用頻率估計發(fā)芽率,一元一次方程解應(yīng)用題,掌握用頻率估計發(fā)芽率,一元一次方程解應(yīng)用題的方法與步驟是解題關(guān)鍵.4、(1)(2)【分析】(1)根據(jù)概率公式直角計算即可;(2)畫樹狀圖可知共有6種等可能的結(jié)果,而甲與乙相鄰而坐的結(jié)果有4種,最后用概率公式求解即可.(1)解:∵丙坐了一張座位,∴甲坐在①號座位的概率是.故答案是.(2)解:根據(jù)題意畫樹狀圖如圖:共有6種等可能的結(jié)果,甲與乙兩同學(xué)恰好相鄰而坐的結(jié)果有4種,∴甲與乙相鄰而坐的概率為=.【點睛】本題主要考查了概率公式以及運用樹狀圖法求概率,正確畫出樹狀圖是解答本題的關(guān)鍵.5、(1)①;②;(2);證明見解析;(3)或.【分析】(1)①,根據(jù)CE=BC,四邊形ABCD為正方形,可得BC=CD=CE,根據(jù)CF⊥DE,得出CF平分∠ECD即可;②,過點C作CG⊥BE于G,根據(jù)BC=EC,得出∠ECG=∠BCG=,根據(jù)∠ECH=∠HCD=,可得CG=HG,根據(jù)勾股定理在Rt△GHC中,,根據(jù)GE=,得出即可;(2),過點C作交BE于點M,得出,先證得出,可證是等腰直角三角形,可得即可;(3)或,根據(jù),分兩種情況,當(dāng)∠ABE=90°-15°=75°時,BC=CE,先證△CDE為等邊三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根據(jù)CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根據(jù)勾股定理HE=,當(dāng)∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根據(jù)30°直角三角形先證得出CF=,根據(jù)勾股定理EF=,再證FH=FE,得出EH=即可.【詳解】解:(1)①∵CE=BC,四邊形ABCD為正方形,∴BC=CD=CE,∵CF⊥DE,∴CF平分∠ECD,∴∠ECH=∠HCD,故答案為:∠ECH=∠HCD;②,過點C作CG⊥BE于G,∵BC=EC,∴∠ECG=∠BCG=,∵∠ECH=∠HCD=,∴∠GCH=∠ECG+∠ECF=+,∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,∴CG=HG,在Rt△GHC中,∴,∵GE=,∴GH=GE+EH=,∴,∴,∴,故答案是:;(2),證明:過點C作交BE于點M,則,∴?,∴,∵,,∴,,∴,∴,∴,,∴是等腰直角三角形,∴,∵,∴,(3)或,∵,分兩種情況,當(dāng)∠ABE=90°-15°=75°時,∵BC=CE,∴∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,∴∠DCE=∠BCE-∠BCD=150°=90°=60°,∵CE=CD,∴△CDE為等邊三角形,∴DE=CD=AB=2,∠DEC=60°,∴∠FEH=∠DEC=∠CEB=60°-15°=45°,∵CF⊥DE,∴DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,∴EF=HF=1,∴HE=,當(dāng)∠ABE=90°+15°=105°,∵BC=CE,∠CBE=∠CEB=15°,∴∠BCE=180°-∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論