版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、若函數(shù)y=(a﹣1)x2+2x+a2﹣1是二次函數(shù),則()A.a(chǎn)≠1 B.a(chǎn)≠﹣1 C.a(chǎn)=1 D.a(chǎn)=±12、已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=bx+c的圖象和反比例函數(shù)y=的圖象在同一坐標(biāo)系中大致為(
)A. B.C. D.3、已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①4a+2b+c>0
;②y隨x的增大而增大;③方程ax2+bx+c=0兩根之和小于零;④一次函數(shù)y=ax+bc的圖象一定不過(guò)第二象限,其中正確的個(gè)數(shù)是(
)A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)4、如圖,Rt△ABC中,,,,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿AB向B點(diǎn)運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,連接DE,當(dāng)以B、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),t的值為()A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.45、記某商品銷(xiāo)售單價(jià)為x元,商家銷(xiāo)售此種商品每月獲得的銷(xiāo)售利潤(rùn)為y元,且y是關(guān)于x的二次函數(shù).已知當(dāng)商家將此種商品銷(xiāo)售單價(jià)分別定為55元或75元時(shí),他每月均可獲得銷(xiāo)售利潤(rùn)1800元;當(dāng)商家將此種商品銷(xiāo)售單價(jià)定為80元時(shí),他每月可獲得銷(xiāo)售利潤(rùn)1550元,則y與x的函數(shù)關(guān)系式是(
)A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+20006、關(guān)于二次函數(shù)的最大值或最小值,下列說(shuō)法正確的是()A.有最大值4 B.有最小值4 C.有最大值6 D.有最小值6二、多選題(7小題,每小題2分,共計(jì)14分)1、如圖,已知等邊三角形ABC的邊長(zhǎng)為2,DE是它的中位線.則下面四個(gè)結(jié)論中正確的有()A.DE=1 B.AB邊上的高為C.△CDE∽△CAB D.△CDE的面積與△CAB面積之比為1:42、如圖是拋物線的一部分,拋物線的頂點(diǎn)坐標(biāo)是A(1,3),與x軸的一個(gè)交點(diǎn)是B(4,0),點(diǎn)P在拋物線上,且在直線AB上方,則下列結(jié)論正確的是(
)A. B.方程有兩個(gè)相等的實(shí)根C. D.點(diǎn)P到直線AB的最大距離3、如圖,正方形ABCD的邊長(zhǎng)為8,點(diǎn)E、F分別在邊AD、BC上,將正方形沿EF折疊,使點(diǎn)A落在邊CD上的A′處,點(diǎn)B落在B′處,A′B′交BC于點(diǎn)G.下列結(jié)論正確的是(
)A.當(dāng)A′為CD中點(diǎn)時(shí),tan∠DA′E=B.當(dāng)A′D∶DE∶A′E=3∶4∶5時(shí),A′C=C.連接AA′,則AA′=EFD.當(dāng)A′(點(diǎn)A′不與C、D重合)在CD上移動(dòng)時(shí),△A′CG周長(zhǎng)隨著A′位置變化而變化4、△ABC和△A′B′C′符合下列條件,其中使△ABC和△A′B′C′相似的是(
)A.∠A=∠A′=45°,∠B=26°,∠B′=109°B.AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3C.∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3D.AB=3,AC=5,BC=7,A′B′=,A′C′=,B′C′=5、已知四條線段a,b,c,d是成比例線段,即,下列說(shuō)法正確的是(
)A.a(chǎn)d=bc B. C. D.6、已知函數(shù)y=的圖象如圖,以下結(jié)論:其中正確的有(
)A.m<0B.在每個(gè)分支上y隨x的增大而增大C.若點(diǎn)A(﹣1,a)、點(diǎn)B(2,b)在圖象上,則a<bD.若點(diǎn)P(x,y)在圖象上,則點(diǎn)P1(﹣x,﹣y)也在圖象上7、如圖,在Rt△ABC中,,于點(diǎn)D,則下列結(jié)論正確的是(
)A. B.C. D.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、制作一塊3m×2m長(zhǎng)方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴(kuò)大為原來(lái)的3倍,那么擴(kuò)大后長(zhǎng)方形廣告牌的成本是_____元.2、如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像分別交、軸于點(diǎn)、,將直線繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn),交軸于點(diǎn),則直線的函數(shù)表達(dá)式是__________.3、如圖,在平行四邊形中,點(diǎn)在邊上,,連接交于點(diǎn),則的面積與四邊形的面積之比為_(kāi)__
4、如圖,四邊形ABCD內(nèi)接于⊙O,∠A=125°,則∠C的度數(shù)為_(kāi)_____.5、已知拋物線與x軸的一個(gè)交點(diǎn)為,則代數(shù)式的值為_(kāi)_____.6、如圖,已知是⊙O的直徑,且,弦,點(diǎn)是弧上的點(diǎn),連接、,若,則的長(zhǎng)為_(kāi)_____.7、將拋物線沿直線方向移動(dòng)個(gè)單位長(zhǎng)度,若移動(dòng)后拋物線的頂點(diǎn)在第一象限,則移動(dòng)后拋物線的解析式是__________.四、解答題(6小題,每小題10分,共計(jì)60分)1、內(nèi)接于⊙O,在劣弧上,連交于,連,.(1)如圖1,求證:;(2)如圖2,平分,求證:;(3)如圖3,在(2)條件下,點(diǎn)在延長(zhǎng)線上,連,于,,,,求⊙O半徑的長(zhǎng).2、新冠肺炎疫情期間,我國(guó)各地采取了多種方式進(jìn)行預(yù)防.其中,某地運(yùn)用無(wú)人機(jī)規(guī)勸居民回家.如圖,無(wú)人機(jī)于空中A處測(cè)得某建筑頂部B處的仰角為,測(cè)得該建筑底部C處的俯角為.若無(wú)人機(jī)的飛行高度為,求該建筑的高度(結(jié)果取整數(shù)),參考數(shù)據(jù):,,.3、如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A坐標(biāo)為(3,0),四邊形OABC為平行四邊形,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)C,與邊AB交于點(diǎn)D,若OC=2,tan∠AOC=1.(1)求反比例函數(shù)解析式;(2)點(diǎn)P(a,0)是x軸上一動(dòng)點(diǎn),求|PC-PD|最大時(shí)a的值;(3)連接CA,在反比例函數(shù)圖象上是否存在點(diǎn)M,平面內(nèi)是否存在點(diǎn)N,使得四邊形CAMN為矩形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.4、如圖,拋物線y=a(x﹣2)2+3(a為常數(shù)且a≠0)與y軸交于點(diǎn)A(0,).(1)求該拋物線的解析式;(2)若直線y=kx(k≠0)與拋物線有兩個(gè)交點(diǎn),交點(diǎn)的橫坐標(biāo)分別為x1,x2,當(dāng)x12+x22=10時(shí),求k的值;(3)當(dāng)﹣4<x≤m時(shí),y有最大值,求m的值.5、計(jì)算:(1)(2)6、如圖,在△ABC和△ADB中,∠ABC=∠ADB=90°,AC=5,AB=4,當(dāng)BD的長(zhǎng)是多少時(shí),圖中的兩個(gè)直角三角形相似?-參考答案-一、單選題1、A【解析】【分析】利用二次函數(shù)定義進(jìn)行解答即可.【詳解】解:由題意得:a﹣1≠0,解得:a≠1,故選:A.【考點(diǎn)】本題主要考查了二次函數(shù)的定義,準(zhǔn)確計(jì)算是解題的關(guān)鍵.2、D【解析】【分析】先通過(guò)二次函數(shù)的圖像確定a、b、c的正負(fù),再利用x=1代入解析式,得到a+b+c的正負(fù)即可判定兩個(gè)函數(shù)的圖像所在的象限,即可得出正確選項(xiàng).【詳解】解:由圖像可知:圖像開(kāi)口向下,對(duì)稱(chēng)軸位于y軸左側(cè),與y軸正半軸交于一點(diǎn),可得:又由于當(dāng)x=1時(shí),因此一次函數(shù)的圖像經(jīng)過(guò)一、二、四三個(gè)象限,反比例函數(shù)的圖像位于二、四象限;故選:D.【考點(diǎn)】本題考查了二次函數(shù)的圖像與性質(zhì)、一次函數(shù)的圖像與性質(zhì)以及反比例函數(shù)的圖像與性質(zhì),解決本題的關(guān)鍵是能讀懂題干中的二次函數(shù)圖像,能根據(jù)圖像確定解析式中各系數(shù)的正負(fù),再通過(guò)各項(xiàng)系數(shù)的正負(fù)判定另外兩個(gè)函數(shù)的圖像所在的象限,本題蘊(yùn)含了數(shù)形結(jié)合的思想方法等.3、D【解析】【分析】根據(jù)函數(shù)的圖象可知x=2時(shí),函數(shù)值的正負(fù)性;并且可知與x軸有兩個(gè)交點(diǎn),即對(duì)應(yīng)方程有兩個(gè)實(shí)數(shù)根;函數(shù)的增減性需要找到其對(duì)稱(chēng)軸才知具體情況;由函數(shù)的圖象還可知b、c的正負(fù)性,一次函數(shù)y=ax+bc所經(jīng)過(guò)的象限進(jìn)而可知正確選項(xiàng).【詳解】∵當(dāng)x=2時(shí),y=4a+2b+c,對(duì)應(yīng)的y值為正,即4a+2b+c>0,故①正確;∵因?yàn)閽佄锞€開(kāi)口向上,在對(duì)稱(chēng)軸左側(cè),y隨x的增大而減??;在對(duì)稱(chēng)軸右側(cè),y隨x的增大而增大,故②錯(cuò)誤;∵由二次函數(shù)y=ax2+bx+c(a≠0)的圖象可知:函數(shù)圖象與x軸有兩個(gè)不同的交點(diǎn),即對(duì)應(yīng)方程有兩個(gè)不相等的實(shí)數(shù)根,且正根的絕對(duì)值較大,∴方程ax2+bx+c=0兩根之和大于零,故③錯(cuò)誤;∵由圖象開(kāi)口向上,知a>0,與y軸交于負(fù)半軸,知c<0,由對(duì)稱(chēng)軸,知b<0,∴bc>0,∴一次函數(shù)y=ax+bc的圖象一定經(jīng)過(guò)第二象限,故④錯(cuò)誤;綜上,正確的個(gè)數(shù)為1個(gè),故選:D.【考點(diǎn)】本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系以及一次函數(shù)的圖象,利用了數(shù)形結(jié)合的思想,此類(lèi)題涉及的知識(shí)面比較廣,能正確觀察圖象是解本題的關(guān)鍵.4、A【解析】【分析】求出AB=2BC=4cm,分兩種情況:①當(dāng)∠EDB=∠ACB=90°時(shí),DE∥AC,△EBD∽△ABC,得出AE=BE=AB=2cm,即可得出t=2s;②當(dāng)∠DEB=∠ACB=90°時(shí),證出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=BD=cm,得出AE=3.5cm,t=3.5s;即可得出結(jié)果.【詳解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分兩種情況:①當(dāng)∠EDB=∠ACB=90°時(shí),DE∥AC,所以△EBD∽△ABC,E為AB的中點(diǎn),AE=BE=AB=2cm,∴t=2s;②當(dāng)∠DEB=∠ACB=90°時(shí),∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D為BC的中點(diǎn),∴BD=BC=1cm,∴BE=BD=0.5cm,∴AE=3.5cm,∴t=3.5s;綜上所述,當(dāng)以B、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),t的值為2或3.5,故選A.【考點(diǎn)】本題考查了相似三角形的判定、平行線的性質(zhì)、含30°角的直角三角形的性質(zhì)等知識(shí);熟記相似三角形的判定方法是解決問(wèn)題的關(guān)鍵,注意分類(lèi)討論.5、D【解析】【分析】設(shè)二次函數(shù)的解析式為:y=ax2+bx+c,根據(jù)題意列方程組即可得到結(jié)論.【詳解】解:設(shè)二次函數(shù)的解析式為:y=ax2+bx+c,∵當(dāng)x=55,y=1800,當(dāng)x=75,y=1800,當(dāng)x=80時(shí),y=1550,∴,解得a=?2,b=260,c=?6450,∴y與x的函數(shù)關(guān)系式是y=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000,故選:D.【考點(diǎn)】本題考查了根據(jù)實(shí)際問(wèn)題列二次函數(shù)關(guān)系式,正確的列方程組是解題的關(guān)鍵.6、D【解析】【分析】根據(jù)二次函數(shù)的解析式,得到a的值為2,圖象開(kāi)口向上,函數(shù)有最小值,根據(jù)定點(diǎn)坐標(biāo)(4,6),即可得出函數(shù)的最小值.【詳解】解:∵在二次函數(shù)中,a=2>0,頂點(diǎn)坐標(biāo)為(4,6),∴函數(shù)有最小值為6.故選:D.【考點(diǎn)】本題主要考查了二次函數(shù)的最值問(wèn)題,關(guān)鍵是根據(jù)二次函數(shù)的解析式確定a的符號(hào)和根據(jù)頂點(diǎn)坐標(biāo)求出最值.二、多選題1、ABCD【解析】【分析】根據(jù)圖形,利用三角形中位線定理,可得DE=1,A成立;AB邊上的高,可利用勾股定理求出等于,B成立;DE是△CAB的中位線,可得DE∥AB,利用平行線分線段成比例定理的推論,可得△CDE∽△CAB,C成立;由△CDE∽△CAB,且相似比等于1:2,那么它們的面積比等于相似比的平方,就等于1:4,D也成立.【詳解】解:∵DE是它的中位線,∴DE=AB=1,故A正確,∴DE∥AB,∴△CDE∽△CAB,故C正確,∴S△CDE:S△CAB=DE2:AB2=1:4,故D正確,∵等邊三角形的高=,故B正確.故選ABCD.【考點(diǎn)】本題利用了:1、三角形中位線的性質(zhì);2、相似三角形的判定:一條直線與三角形一邊平行,則它所截得三角形與原三角形相似;3、相似三角形的面積等于對(duì)應(yīng)邊的比的平方;4、等邊三角形的高=邊長(zhǎng)×sin60°.2、BCD【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)、方程與二次函數(shù)的關(guān)系、函數(shù)與不等式的關(guān)系、坐標(biāo)系內(nèi)直線的平移、利用配方法求二次三項(xiàng)式的最值即可一一判斷.【詳解】解:由圖象可知,,則,故A選項(xiàng)錯(cuò)誤;由圖象可知,直線與拋物線只有一個(gè)交點(diǎn),則方程有兩個(gè)相等的實(shí)根,故B選項(xiàng)正確;當(dāng)時(shí),拋物線由最大值,則,即,故C選項(xiàng)正確;設(shè)直線AB的表達(dá)式為,且A(1,3),B(4,0)在直線上,則,解得,,即,由拋物線的對(duì)稱(chēng)軸為得,則,即,又A(1,3),B(4,0)在拋物線上,則,解得,,將直線向上平移與拋物線有一個(gè)交點(diǎn)時(shí)至,要求點(diǎn)P到直線AB的最大距離,即點(diǎn)P為直線與拋物線的交點(diǎn),過(guò)點(diǎn)作于,軸,如圖所示,由直線AB可得,為等腰直角三角形,又直線由直線平移得到,且軸,,,是等腰直角三角形,由平移的性質(zhì)可設(shè)直線的表達(dá)式為,當(dāng)與拋物線有一個(gè)交點(diǎn)時(shí),即,整理得,由于只有一個(gè)交點(diǎn),則,解得,即直線AB向上平移了:,則,則,點(diǎn)P到直線AB的最大距離,故D選項(xiàng)正確,故選BCD.【考點(diǎn)】本題考查了二次函數(shù)的圖象及性質(zhì)、方程與二次函數(shù)的關(guān)系、函數(shù)與不等式的關(guān)系、平面直角坐標(biāo)系內(nèi)直線的平移,解題的關(guān)鍵學(xué)會(huì)利用函數(shù)圖象解決問(wèn)題,靈活運(yùn)用相關(guān)知識(shí)解決問(wèn)題,本題難點(diǎn)在于要求拋物線上的點(diǎn)到直線的最大距離即求直線平移至與拋物線有一個(gè)交點(diǎn)時(shí)交點(diǎn)到直線的距離.3、ABC【解析】【分析】A.當(dāng)A′為CD中點(diǎn)時(shí),設(shè)A'E=AE=x,則DE=8﹣x,根據(jù)勾股定理列出方程求解,可推出A正確;B.當(dāng)△A'DE三邊之比為3:4:5時(shí),假設(shè)A'D=3a,DE=4a,A'E=5a,根據(jù)AD=AE+DE=8,可求得a的值,進(jìn)一步求得A'D=,即可判斷出B正確;C.過(guò)點(diǎn)E作EM⊥BC,垂足為M,連接A'A交EM,EF于點(diǎn)N,Q,證明△AA′D≌△EFM(ASA),即得C正確;D.過(guò)點(diǎn)A作AH⊥A'G,垂足為H,連接A'A,AG,先證△AA'D≌△AA'H,可得AD=AH,A'D=A'H,再證Rt△ABG≌Rt△AHG,可得HG=BG,由此證得△A'CG周長(zhǎng)=16,即可得出D錯(cuò)誤.【詳解】解:∵A′為CD中點(diǎn),正方形ABCD的邊長(zhǎng)為8,∴AD=8,A'D=CD=4,∠D=90o,∵正方形沿EF折疊,∴A'E=AE,∴設(shè)A'E=AE=x,則DE=8﹣x,∵在Rt△A'DE中,A'D2+DE2=A'E2,∴42+(8﹣x)2=x2,解得:x=5,∴AE=5,DE=3,∴tan∠DA'E=,故A正確;當(dāng)△A'DE三邊之比為3:4:5時(shí),假設(shè)A'D=3a,DE=4a,A'E=5a,則AE=A'E=5a,∵AD=AE+DE=8,∴5a+4a=8,解得:a=,∴A'D=3a=,A'C=CD﹣A'D=8﹣=,故B正確;如圖1,過(guò)點(diǎn)E作EM⊥BC,垂足為M,連接A'A交EM,EF于點(diǎn)N,Q,∴EM∥CD,EM=CD=AD,∴∠AEN=∠D=90°,由翻折可知:EF垂直平分AA′,∴∠AQE=90°,∴∠EAN+∠ANE=∠QEN+∠ANE=90°,∴∠EAN=∠QEN,在△AA'D和△EFM中,,∴△AA′D≌△EFM(ASA),∴AA'=EF,故C正確;如圖2,過(guò)點(diǎn)A作AH⊥A'G,垂足為H,連接A'A,AG,則∠AHA'=∠AHG=90°,∵折疊,∴∠EA'G=∠EAB=90°,A'E=AE,∵∠D=90o∴∠EAA'+∠DA'A=90o,∴∠AA'G=∠DA'A,∴△AA'D≌△AA'H(AAS),∴AD=AH,A'D=A'H,∵AD=AB,∴AH=AB,在Rt△ABG與Rt△AHG中,,∴Rt△ABG≌Rt△AHG(HL),∴HG=BG,∴△A'CG周長(zhǎng)=A'C+A'G+CG=A'C+A'H+HG+CG=A'C+A'D+BG+CG=CD+BC=8+8=16,∴當(dāng)A'在CD上移動(dòng)時(shí),△A'CG周長(zhǎng)不變,故D錯(cuò)誤.故選:ABC【考點(diǎn)】本題屬于幾何綜合題,考查了正方形的性質(zhì),折疊的性質(zhì),勾股定理,全等三角形的判定及性質(zhì),熟練掌握相關(guān)圖形的性質(zhì)是解決本題的關(guān)鍵.4、ABC【解析】【分析】根據(jù)三角形相似的判定定理逐項(xiàng)排查即可.【詳解】解:A:∵∠A=∠A′=45°,∠B=26°,∠B′=109°,∴∠C=109°,∠C′=26°,∴∠B=∠C,∴△ABC∽△A′C′B′,B:∵AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3,∴,∴△ABC∽△C′A′B′;C:∵∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3,∴AB:B′C′=AC:A′B′=2:3,∴△ABC∽△B′C′A′;D:∵AB=3,AC=5,BC=7,A′B′=,A′C′=
B′C′=,∴,∴不相似.故選ABC.【考點(diǎn)】本題主要考查了相似三角形的判定,相似三角形的判定方法主要有:①有兩個(gè)對(duì)應(yīng)角相等的三角形相似;②有兩個(gè)對(duì)應(yīng)邊的比相等,且其夾角相等,則兩個(gè)三角形相似;③三組對(duì)應(yīng)邊的比相等,則兩個(gè)三角形相似.5、ABD【解析】【分析】根據(jù)比例的性質(zhì)將原式變形,分別進(jìn)行判斷即可,進(jìn)而得出答案.【詳解】解:∵四條線段a,b,c,d是成比例線段,即,∴A.利用內(nèi)項(xiàng)之積等于外項(xiàng)之積,ad=bc,故選項(xiàng)正確,B.利用內(nèi)項(xiàng)之積等于外項(xiàng)之積,a(b+d)=b(a+c),ab+ad=ab+bc,即ad=bc,故選項(xiàng)正確,C.∵,∴,故選項(xiàng)錯(cuò)誤,D.∵∴,故選項(xiàng)正確,故選:ABD.【考點(diǎn)】此題主要考查了比例的性質(zhì),將比例式靈活正確變形得出是解題關(guān)鍵.6、ABD【解析】【分析】利用反比例函數(shù)的性質(zhì)及反比例函數(shù)的圖象上的點(diǎn)的坐標(biāo)特征逐項(xiàng)判定即可.【詳解】解:①根據(jù)反比例函數(shù)的圖象的兩個(gè)分支分別位于二、四象限,可得m<0,故①正確;②在每個(gè)分支上y隨x的增大而增大,故②正確;③若點(diǎn)A(﹣1,a)、點(diǎn)B(2,b)在圖象上,則a>b,故③錯(cuò)誤;④若點(diǎn)P(x,y)在圖象上,則點(diǎn)P1(﹣x,﹣y)也在圖象上,正確.故選:ABD.【考點(diǎn)】本題主要考查了反比例函數(shù)的性質(zhì)及反比例函數(shù)的圖象上的點(diǎn)的坐標(biāo)特征,掌握反比例函數(shù)的圖象上的點(diǎn)的坐標(biāo)特征成為解答本題的關(guān)鍵.7、BC【解析】【分析】根據(jù)正切函數(shù)的定義即可一一判定.【詳解】解:,,,,,在中,,故選項(xiàng)A、D不正確;在中,,故選項(xiàng)B正確;在中,,,故選項(xiàng)C正確;故選:BC.【考點(diǎn)】本題考查了正切函數(shù)的定義和直角三角形的性質(zhì),熟練掌握和運(yùn)用正切函數(shù)的定義和求法是解決本題的關(guān)鍵.三、填空題1、1080【解析】【分析】直接利用相似多邊形的性質(zhì)進(jìn)而得出答案.【詳解】∵將此廣告牌的四邊都擴(kuò)大為原來(lái)的3倍,∴面積擴(kuò)大為原來(lái)的9倍,∴擴(kuò)大后長(zhǎng)方形廣告牌的成本為:120×9=1080(元).故答案為:1080.【考點(diǎn)】此題考查相似多邊形的性質(zhì),相似多邊形的面積的比等于相似比的平方.2、【解析】【分析】先根據(jù)一次函數(shù)求得、坐標(biāo),再過(guò)作的垂線,構(gòu)造直角三角形,根據(jù)勾股定理和正余弦公式求得的長(zhǎng)度,得到點(diǎn)坐標(biāo),從而得到直線的函數(shù)表達(dá)式.【詳解】因?yàn)橐淮魏瘮?shù)的圖像分別交、軸于點(diǎn)、,則,,則.過(guò)作于點(diǎn),因?yàn)?,所以由勾股定理得,設(shè),則,根據(jù)等面積可得:,即,解得.則,即,所以直線的函數(shù)表達(dá)式是.【考點(diǎn)】本題綜合考察了一次函數(shù)的求解、勾股定理、正余弦公式,以及根據(jù)一次函數(shù)的解求一次函數(shù)的表達(dá)式,要學(xué)會(huì)通過(guò)作輔助線得到特殊三角形,以便求解.3、【解析】【分析】由DE:EC=3:1,可得DF:FB=3:4,根據(jù)在高相等的情況下三角形面積比等于底邊的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面積與四邊形BCEF的面積的比值.【詳解】解:連接BE∵DE:EC=3:1∴設(shè)DE=3k,EC=k,則CD=4k∵ABCD是平行四邊形∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4∵DE:EC=3:1∴S△BDE:S△BEC=3:1設(shè)S△BDE=3a,S△BEC=a則S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴則△DEF的面積與四邊形BCEF的面積之比9:19故答案為:.【考點(diǎn)】本題考查了平行線分線段成比例,平行四邊形的性質(zhì),關(guān)鍵是運(yùn)用在高相等的情況下三角形面積比等于底邊的比求三角形的面積比值.4、55°##55度【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠A+∠C=180°,再求出答案即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=180°-125°=55°,故答案為:55°.【考點(diǎn)】本題考查了圓內(nèi)接四邊形的性質(zhì)和圓周角定理,能熟記圓內(nèi)接四邊形的對(duì)角互補(bǔ)是解此題的關(guān)鍵.5、2019【解析】【分析】先將點(diǎn)(m,0)代入函數(shù)解析式,然后求代數(shù)式的值即可得出結(jié)果.【詳解】解:將(m,0)代入函數(shù)解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.故答案為:2019.【考點(diǎn)】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征及求代數(shù)式的值,解題的關(guān)鍵是將點(diǎn)(m,0)代入函數(shù)解析式得到有關(guān)m的代數(shù)式的值.6、9【解析】【分析】連接OC和OE,由同弧所對(duì)的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對(duì)的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點(diǎn)】本題考查了圓周角定理及垂徑定理等相關(guān)知識(shí)點(diǎn),本題的關(guān)鍵是求出∠COB=60°.7、【解析】【分析】設(shè)拋物線沿直線方向移動(dòng)個(gè)單位長(zhǎng)度后頂點(diǎn)坐標(biāo)為(t,3t),再求出平移后的頂點(diǎn)坐標(biāo),最后求出平移后的函數(shù)關(guān)系式.【詳解】設(shè)拋物線沿直線方向移動(dòng)個(gè)單位長(zhǎng)度后頂點(diǎn)坐標(biāo)為(t,3t),∴,解得:t=1或t=-1(舍去),∴平移后的頂點(diǎn)坐標(biāo)為(1,3),∴移動(dòng)后拋物線的解析式是.故答案為:.【考點(diǎn)】本題考查二次函數(shù)的圖象變換及一次函數(shù)的圖像,解題的關(guān)鍵是正確理解圖象變換的條件,本題屬于基礎(chǔ)題型.四、解答題1、(1)見(jiàn)解析;(2)見(jiàn)解析;(3)【解析】【分析】(1)如圖,連接,由和分別是弧所對(duì)的圓心角和圓周角,利用圓周角定理可得,由,可得,OC平分,由,利用三線合一可證即可.
(2)如圖,過(guò)點(diǎn)作于,由平分,,,可得,,,由勾股定理得,,可求即可.(3)由,可得,由,可得,由,,可得,由平分,可得,由,可得,可證,可得,即,可求,由勾股定理,可求即可得到答案.【詳解】證明(1)如圖,連接,∵和分別是弧所對(duì)的圓心角和圓周角,∴,∵,∴,∴,∵,∴.
(2)如圖,過(guò)點(diǎn)作于,∵平分,,,∴,,,
∵,,∴,∴.
(3)∵,∴,∵,∴,
∵,,∴,∴,∵平分,∴,∵,∴,∴,
∵,∴,∴,∵,∴,∴,∵,,∴,解得:,(舍去),∴,∴,∴,即半徑的長(zhǎng)是.【考點(diǎn)】本題考查圓周角定理,等腰三角形性質(zhì),角平分線性質(zhì),勾股定理,相似三角形判定與性質(zhì),掌握?qǐng)A周角定理,等腰三角形性質(zhì),角平分線性質(zhì),勾股定理,相似三角形判定與性質(zhì)是解題關(guān)鍵.2、42m【解析】【分析】如圖,過(guò)點(diǎn)A作,垂足為E.利用,求解即可.【詳解】解:如圖,過(guò)點(diǎn)A作,垂足為E.由題意可知,,,.在中,,∴.在中,,.∵,∴.答:該建筑的高度約為.【考點(diǎn)】本題考查了解斜三角形,通過(guò)作高化斜三角形為直角三角形,并準(zhǔn)確求解是解題的關(guān)鍵.3、(1)(2)|PC?PD|最大時(shí)a的值為6(3)存在,點(diǎn)M的坐標(biāo)為(,)【解析】【分析】(1)先確定出OE=CE=2,即可得出點(diǎn)C坐標(biāo),最后用待定系數(shù)法即可得出結(jié)論;(2)先求出OC解析式,由平行四邊形的性質(zhì)可得BC=OA=3,BC∥OA,AB∥OC,利用待定系數(shù)法可求AB解析式,求出點(diǎn)D的坐標(biāo),再根據(jù)三角形關(guān)系可得出當(dāng)點(diǎn)P,C,D三點(diǎn)共線時(shí),|PC-PD|最大,求出直線CD的解析式,令y=0即可求解;(3)若四邊形CAMN為矩形,則△CAM是直角三角形且AC為一條直角邊,根據(jù)直角頂點(diǎn)需要分兩種情況,畫(huà)出圖形分別求解即可.(1)解:如圖1,過(guò)點(diǎn)C作CE⊥x軸于E,∴∠CEO=90°,∵tan∠AOC=1,∴∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵點(diǎn)C在反比例函數(shù)圖象上,∴k=2×2=4,∴反比例函數(shù)解析式為y=;(2)解:∵點(diǎn)C(2,2),點(diǎn)O(0,0),∴OC解析式為:y=x,∵四邊形OABC是平行四邊形,點(diǎn)A坐標(biāo)為(3,0),∴BC=OA=3,BC∥OA,AB∥OC,∴點(diǎn)B(5,2),∴設(shè)AB解析式為:y=x+b,∴2=5+b,∴b=-3,∴AB解析式為:y=x-3,聯(lián)立方程組可得:,∴或(舍去),∴點(diǎn)D(4,1);在△PCD中,|PC-PD|<CD,則當(dāng)點(diǎn)P,C,D三點(diǎn)共線時(shí),|PC-PD|=CD,此時(shí),|PC-PD|取得最大值,由(1)知C(2,2),D(4,1),設(shè)直線CD的解析式為:y=mx+n,∴,解得,∴直線CD的解析式為:y=x+3,令y=0,即x+3=0,得x=6,∴|PC-PD|最大時(shí)a的值為6;(3)(3)存在,理由如下:若四邊形CAMN為矩形,則△CAM是直角三角形,則①當(dāng)點(diǎn)A為直角頂點(diǎn)時(shí),如圖2,過(guò)點(diǎn)A作AC的垂線與y=交于點(diǎn)M,分別過(guò)點(diǎn)C,M作x軸的垂線,垂足分別為點(diǎn)F,G,由“一線三等角”模型可得△AFC∽△MGA,則AF:
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江省臺(tái)州市臨海市2025-2026學(xué)年三年級(jí)上學(xué)期數(shù)學(xué)1月期末檢測(cè)(含答案)
- 云南省昆明市盤(pán)龍區(qū)2025-2026學(xué)年八年級(jí)上學(xué)期期末統(tǒng)測(cè)語(yǔ)文試卷(含答案)
- 《GAT 1363-2016警用裝備倉(cāng)庫(kù)物資出庫(kù)作業(yè)規(guī)范》專(zhuān)題研究報(bào)告
- 2026年深圳中考語(yǔ)文三輪復(fù)習(xí)沖刺試卷(附答案可下載)
- 2026年深圳中考數(shù)學(xué)四邊形專(zhuān)項(xiàng)訓(xùn)練試卷(附答案可下載)
- 2026年深圳中考生物血管和心臟專(zhuān)項(xiàng)試卷(附答案可下載)
- 2026年人教版化學(xué)高一下冊(cè)期末質(zhì)量檢測(cè)卷(附答案解析)
- 2026年廣州中考語(yǔ)文題型全解全練試卷(附答案可下載)
- 2026-2032年中國(guó)結(jié)構(gòu)粘接密封膠行業(yè)市場(chǎng)現(xiàn)狀調(diào)查及前景戰(zhàn)略研判報(bào)告
- 2026年文學(xué)名著與現(xiàn)代小說(shuō)閱讀理解題
- 綜合門(mén)診部管理制度
- 2025版6G智能軌道交通白皮書(shū)
- 《超純水制備培訓(xùn)資料》課件
- 定制手機(jī)采購(gòu)合同協(xié)議
- CNAS-CL05-2009 實(shí)驗(yàn)室生物安全認(rèn)可準(zhǔn)則
- 2024-2025學(xué)年湖北省新高考聯(lián)考協(xié)作體高一上學(xué)期12月聯(lián)考生物B及答案
- 攻擊面管理技術(shù)應(yīng)用指南 2024
- 電梯井道腳手架搭設(shè)方案
- DL∕T 622-2012 立式水輪發(fā)電機(jī)彈性金屬塑料推力軸瓦技術(shù)條件
- 傳染病學(xué)-病毒性肝炎
- 重慶市沙坪壩小學(xué)小學(xué)語(yǔ)文五年級(jí)上冊(cè)期末試卷
評(píng)論
0/150
提交評(píng)論