版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
試卷第=page22頁,共=sectionpages11頁試卷第=page22頁,共=sectionpages22頁人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、在菱形ABCD中,兩條對角線AC=10,BD=24,則此菱形的邊長為()A.14 B.25 C.26 D.132、如圖,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分別是AB,AC的中點(diǎn),連接DE,BE,點(diǎn)M在CB的延長線上,連接DM,若∠MDB=∠A,則四邊形DMBE的周長為()A.16 B.24 C.32 D.403、如圖,將矩形紙片按如圖所示的方式折疊,得到菱形,若,則的長為()A.2 B. C.4 D.4、如圖,把正方形紙片ABCD沿對邊中點(diǎn)所在的直線對折后展開,折痕為MN,再過點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,折痕為BE,若AB的長為2,則FM的長為()A.2 B. C. D.15、如圖,已知E為鄰邊相等的平行四邊形ABCD的邊BC上一點(diǎn),且∠DAE=∠B=80o,那么∠CDE的度數(shù)為()A.20o B.25o C.30o D.35o第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在矩形ABCD中,AB=3,BC=4,點(diǎn)P是對角線AC上一點(diǎn),若點(diǎn)P、A、B組成一個等腰三角形時,△PAB的面積為___________.2、如圖,圓柱形容器高為0.8m,底面周長為4.8m,在容器內(nèi)壁離底部0.1m的點(diǎn)處有一只蚊子,此時一只壁虎正好在容器的頂部點(diǎn)處,若容器壁厚忽略不計,則壁虎捕捉蚊子的最短路程是______m.3、如圖,四邊形和四邊形都是邊長為4的正方形,點(diǎn)是正方形對角線的交點(diǎn),正方形繞點(diǎn)旋轉(zhuǎn)過程中分別交,于點(diǎn),,則四邊形的面積為______.4、如圖,將n個邊長都為1的正方形按如圖所示擺放,點(diǎn)A1,A2,…,An分別是正方形的中心,則n個正方形重疊形成的重疊部分的面積和為_____.5、如圖,矩形ABCD中,AB=9,AD=12,點(diǎn)M在對角線BD上,點(diǎn)N為射線BC上一動點(diǎn),連接MN,DN,且∠DNM=∠DBC,當(dāng)DMN是等腰三角形時,線段BN的長為___.三、解答題(5小題,每小題10分,共計50分)1、在Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥AB,交BC于點(diǎn)E,連接AE,取AE的中點(diǎn)P,連接DP,CP.(1)觀察猜想:如圖(1),DP與CP之間的數(shù)量關(guān)系是,DP與CP之間的位置關(guān)系是.(2)類比探究:將圖(1)中的△BDE繞點(diǎn)B逆時針旋轉(zhuǎn)45°,(1)中的結(jié)論是否仍然成立?若成立,請就圖(2)的情形給出證明;若不成立,請說明理由.(3)問題解決:若BC=3BD=3,將圖(1)中的△BDE繞點(diǎn)B在平面內(nèi)自由旋轉(zhuǎn),當(dāng)BE⊥AB時,請直接寫出線段CP的長.2、如圖所示,正方形中,點(diǎn)E,F(xiàn)分別為BC,CD上一點(diǎn),點(diǎn)M為EF上一點(diǎn),,M關(guān)于直線AF對稱.
(1)求證:B,M關(guān)于AE對稱;(2)若的平分線交AE的延長線于G,求證:.3、如圖,在中,對角線AC、BD交于點(diǎn)O,AB=10,AD=8,AC⊥BC,求(1)的面積;(2)△AOD的周長.
4、如圖,四邊形ABCD是一個菱形綠草地,其周長為40m,∠ABC=120°,在其內(nèi)部有一個矩形花壇EFGH,其四個頂點(diǎn)恰好在菱形ABCD各邊中點(diǎn),現(xiàn)準(zhǔn)備在花壇中種植茉莉花,其單價為30元/m2,則需投資資金多少元?(取1.732)5、如圖,在平面直角坐標(biāo)系中,ΔABC三個頂點(diǎn)的坐標(biāo)分別為A(1,1)、B(4,2)、C(3,5).(1)請畫出△ABC關(guān)于x軸的對稱圖形ΔA1B1C1;(2)借助網(wǎng)格,利用無刻度直尺畫出線段CD,使CD平分ΔABC的面積.(保留確定點(diǎn)D的痕跡).-參考答案-一、單選題1、D【解析】【分析】由菱形的性質(zhì)和勾股定理即可求得AB的長.【詳解】解:∵四邊形ABCD是菱形,AC=10,BD=24,∴AB=BC=CD=AD,AC⊥BD,OB=OD=BD=12,OA=OC=AC=5,在Rt△ABO中,AB==13,故選:D.【點(diǎn)睛】本題考查了菱形的性質(zhì)、勾股定理等知識,熟練掌握菱形的性質(zhì),由勾股定理求出AB=13是解題的關(guān)鍵.2、C【解析】【分析】由中點(diǎn)的定義可得AE=CE,AD=BD,根據(jù)三角形中位線的性質(zhì)可得DE//BC,DE=BC,根據(jù)平行線的性質(zhì)可得∠ADE=∠ABC=90°,利用ASA可證明△MBD≌△EDA,可得MD=AE,DE=MB,即可證明四邊形DMBE是平行四邊形,可得MD=BE,進(jìn)而可得四邊形DMBE的周長為2DE+2MD=BC+AC,即可得答案.【詳解】∵D,E分別是AB,AC的中點(diǎn),∴AE=CE,AD=BD,DE為△ABC的中位線,∴DE//BC,DE=BC,∵∠ABC=90°,∴∠ADE=∠ABC=90°,在△MBD和△EDA中,,∴△MBD≌△EDA,∴MD=AE,DE=MB,∵DE//MB,∴四邊形DMBE是平行四邊形,∴MD=BE,∵AC=18,BC=14,∴四邊形DMBE的周長=2DE+2MD=BC+AC=18+14=32.故選:C.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì)、三角形中位線的性質(zhì)及平行四邊形的判定與性質(zhì),三角形中位線平行于第三邊且等于第三邊的一半;有一組對邊平行且相等的四邊形是平行四邊形;熟練掌握相關(guān)性質(zhì)及判定定理是解題關(guān)鍵.3、D【解析】【分析】根據(jù)菱形及矩形的性質(zhì)可得到∠BAC的度數(shù),從而根據(jù)直角三角形的性質(zhì)求得BC的長.【詳解】解:∵四邊形AECF為菱形,∴∠FCO=∠ECO,EC=AE,由折疊的性質(zhì)可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又∵EC=AE,AB=AE+EB=6,∴EB=2,EC=4,∴Rt△BCE中,,故選:D.【點(diǎn)睛】本題主要考查了菱形的性質(zhì)以及矩形的性質(zhì),解決問題的關(guān)鍵是根據(jù)折疊以及菱形的性質(zhì)發(fā)現(xiàn)特殊角,根據(jù)30°的直角三角形中各邊之間的關(guān)系求得BC的長.4、B【解析】【分析】由折疊的性質(zhì)可得,∠BMN=90°,F(xiàn)B=AB=2,由此利用勾股定理求解即可.【詳解】解:∵把正方形紙片ABCD沿對邊中點(diǎn)所在的直線對折后展開,折痕為MN,AB=2,∴,∠BMN=90°,∵四邊形ABCD為正方形,AB=2,過點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,∴FB=AB=2,則在Rt△BMF中,,故選B.【點(diǎn)睛】本題主要考查了正方形與折疊,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).5、C【解析】【分析】依題意得出AE=AB=AD,∠ADE=50°,又因?yàn)椤螧=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,從而求解.【詳解】∵ADBC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故選:C.【點(diǎn)睛】考查菱形的邊的性質(zhì),同時綜合利用三角形的內(nèi)角和及等腰三角形的性質(zhì),解題關(guān)鍵是利用等腰三角形的性質(zhì)求得∠ADE的度數(shù).二、填空題1、或或3【解析】【分析】過B作BM⊥AC于M,根據(jù)矩形的性質(zhì)得出∠ABC=90°,根據(jù)勾股定理求出AC,根據(jù)三角形的面積公式求出高BM,分為三種情況:①AB=BP=3,②AB=AP=3,③AP=BP,分別畫出圖形,再求出面積即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,由勾股定理得:,有三種情況:①當(dāng)AB=BP=3時,如圖1,過B作BM⊥AC于M,S△ABC=,,解得:,∵AB=BP=3,BM⊥AC,∴,∴AP=AM+PM=,∴△PAB的面積=;②當(dāng)AB=AP=3時,如圖2,∵BM=,∴△PAB的面積S=;③作AB的垂直平分線NQ,交AB于N,交AC于P,如圖3,則AP=BP,BN=AN=,∵四邊形ABCD是矩形,NQ⊥AC,∴PN∥BC,∵AN=BN,∴AP=CP,∴,∴△PAB的面積;即△PAB的面積為或或3.故答案為:或或3.【點(diǎn)睛】本題主要是考查了矩形的性質(zhì)、等腰三角形的判定以及勾股定理求邊長,熟練掌握矩形的性質(zhì),利用等腰三角形的判定,分成三種情況討論,是解決本題的關(guān)鍵.2、2.5.【解析】【分析】如圖所示,將容器側(cè)面展開,連接AB,則AB的長即為最短距離,然后分別求出AC,BC的長度,利用勾股定理求解即可.【詳解】解:如圖所示,將容器側(cè)面展開,連接AB,則AB的長即為最短距離,∵圓柱形容器高為0.8m,底面周長為4.8m在容器內(nèi)壁離底部0.1m的點(diǎn)B處有一只蚊子,此時一只壁虎正好在容器的頂部點(diǎn)A處,∴,,,過點(diǎn)B作BC⊥AD于C,∴∠BCD=90°,∵四邊形ADEF是矩形,∴∠ADE=∠DEF=90°∴四邊形BCDE是矩形,∴,,∴,∴,答:則壁虎捕捉蚊子的最短路程是2.5m.故答案為:2.5.【點(diǎn)睛】本題主要考查了平面展開—最短路徑,解題的關(guān)鍵在于能夠根據(jù)題意確定展開圖中AB的長即為所求.3、4【解析】【分析】過點(diǎn)O作OG⊥AB,垂足為G,過點(diǎn)O作OH⊥BC,垂足為H,把四邊形的面積轉(zhuǎn)化為正方形OGBH的面積,等于正方形ABCD面積的.【詳解】如圖,過點(diǎn)O作OG⊥AB,垂足為G,過點(diǎn)O作OH⊥BC,垂足為H,∵四邊形ABCD的對角線交點(diǎn)為O,∴OA=OC,∠ABC=90°,AB=BC,∴OG∥BC,OH∥AB,∴四邊形OGBH是矩形,OG=OH=,∠GOH=90°,∴=4,∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,∴∠FOH=∠EOG,∵∠OGE=∠OHF=90°,OG=OH,∴△OGE≌△OHF,∴,∴,∴=4,故答案為:4.【點(diǎn)睛】本題考查了正方形的性質(zhì),三角形的全等與性質(zhì),補(bǔ)形法計算面積,熟練掌握正方形的性質(zhì),靈活運(yùn)用補(bǔ)形法計算面積是解題的關(guān)鍵.4、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為(n-1)個陰影部分的和.【詳解】解:由題意可得一個陰影部分面積等于正方形面積的,即是,n個這樣的正方形重疊部分(陰影部分)的面積和為:.故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),解題的關(guān)鍵是得到n個這樣的正方形重疊部分(陰影部分)的面積和的計算方法,難點(diǎn)是求得一個陰影部分的面積.5、15或24或【解析】【分析】分三種情形討論求解即可.【詳解】解:①如圖1中,當(dāng)NM=ND時,∴∠NDM=∠NMD,∵∠MND=∠CBD,∴∠BDN=∠BND,∴BD=BN==15;②如圖2中,當(dāng)DM=DN時,此時M與B重合,∴BC=CN=12,∴BN=24;③如圖3中,當(dāng)MN=MD時,∴∠NDM=∠MND,∵∠MND=∠CBD,∴∠NDM=∠MND=∠CBD,∴BN=DN,設(shè)BN=DN=x,在Rt△DNC中,∵DN2=CN2+CD2,∴x2=(12-x)2+92,∴x=,綜上,當(dāng)DMN是等腰三角形時,線段BN的長為15或24或.故答案為:15或24或.【點(diǎn)睛】本題考查了矩形的性質(zhì)、等腰三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,注意不能漏解.三、解答題1、(1)PD=PC,PD⊥PC;(2)成立,見解析;(3)2或4【分析】(1)根據(jù)直角三角形斜邊中線的性質(zhì),可得,根據(jù)角之間的關(guān)系即可,即可求解;(2)過點(diǎn)P作PT⊥AB交BC的延長線于T,交AC于點(diǎn)O,根據(jù)全等三角形的判定與性質(zhì)求解即可;(3)分兩種情況,當(dāng)點(diǎn)E在BC的上方時和當(dāng)點(diǎn)E在BC的下方時,過點(diǎn)P作PQ⊥BC于Q,利用等腰直角三角形的性質(zhì)求得,即可求解.【詳解】解:(1)∵∠ACB=90°,AC=BC,∴,∵,∴,∵點(diǎn)P為AE的中點(diǎn),∴,∴,,∴,∴故答案為:,.(2)結(jié)論成立.理由如下:過點(diǎn)P作PT⊥AB交BC的延長線于T,交AC于點(diǎn)O.則∴,∴,,由勾股定理可得:∴∴∴∵點(diǎn)P為AE的中點(diǎn),∴∴在中,,∴,∴∴∴,∴∴,∴.(3)如圖3﹣1中,當(dāng)點(diǎn)E在BC的上方時,過點(diǎn)P作PQ⊥BC于Q.則,∴∵∴由(2)可得,,,∴為等腰直角三角形∴∴由勾股定理得,如圖3﹣2中,當(dāng)點(diǎn)E在BC的下方時,同法可得PC=PD=2.綜上所述,PC的長為4或2.【點(diǎn)睛】此題考查了等腰直角三角形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練掌握相關(guān)基本性質(zhì),做輔助線,構(gòu)造出全等三角形.2、(1)見解析;(2)見解析【分析】(1)由已知可證,,即可得證;(2)由上述結(jié)論可得,再證△AFG為等腰直角三角形.【詳解】解:連結(jié)AM,DM,BM,
∵D、M關(guān)于直線AF對稱,∴AF垂直平分DM,∴AD=AM,F(xiàn)D=FM,∴△DAF≌△MAF,∴∠AMF=∠ADF=∠AME=∠ABE=90°,AM=AB,AE=AE,∴△BAE≌△MAE,∴EM=EB,∴AE垂直平分BM,∴B、M關(guān)于AE對稱;(2)由(1)知△BAE≌△MAE,∴AE平分∠BEF,∴∠EAF=∠BAD=45°,又AF平分∠DFE,F(xiàn)G平分∠EFC,∴∠AFG=90°.∴△AFG為等腰直角三角形,∴.【點(diǎn)睛】本題是四邊形綜合題,主要考查了軸對稱的性質(zhì),等腰直角三角形的判定,勾股定理,三角形的面積等知識,綜合性較強(qiáng),有一定難度.準(zhǔn)確作出輔助線是解題的關(guān)鍵.有關(guān)45°角的問題,往往利用全等,構(gòu)造等腰直角三角形,使問題迅速獲解.3、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面積;(2)根據(jù)平行四邊形的性質(zhì)求出AO,再利用勾股定理求出OB的長,故可求解.【詳解】解:(1)∵四邊形ABCD是平行四邊形,且AD=8
∴BC=AD=8∵AC⊥BC∴∠ACB=90°在Rt△ABC中,由勾股定理得AC2=AB2-BC2∴∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026福建廈門市集美區(qū)英村(兌山)幼兒園非在編教職工招聘1人備考考試題庫附答案解析
- 2026四川廣安市華鎣市委“兩新”工委、華鎣市級行業(yè)(綜合)黨委社會化選聘新興領(lǐng)域黨建工作專員6人備考考試題庫附答案解析
- 安全生產(chǎn)法一崗雙責(zé)制度
- 山東生產(chǎn)追溯措施制度
- 生產(chǎn)設(shè)備設(shè)施清潔制度
- 2026年上半年云南特殊教育職業(yè)學(xué)院招聘人員(6人)備考考試試題附答案解析
- 煉鋼廠全員生產(chǎn)責(zé)任制度
- 2026廣東深圳市龍崗區(qū)婦幼保健院招聘142人(第一批次)備考考試試題附答案解析
- 航空器生產(chǎn)制造規(guī)章制度
- 2026北京大學(xué)口腔醫(yī)學(xué)院(口腔醫(yī)院)招聘4人(第2批)備考考試試題附答案解析
- 智慧物流背景下多式聯(lián)運(yùn)的協(xié)同發(fā)展與運(yùn)輸效能提升研究畢業(yè)論文答辯匯報
- 替人背債合同范本
- 魯教版(五四學(xué)制)(2012)九年級英語全冊期末總復(fù)習(xí)
- 下尿路癥狀(LUTS)前沿進(jìn)展綜述
- 初一數(shù)學(xué)2025年上學(xué)期單元測試專項(xiàng)訓(xùn)練試卷(含答案)
- 《電機(jī)與電氣控制技術(shù)》電子教案
- 華菱鋼鐵ESG報告中碳排放信息披露質(zhì)量評價及優(yōu)化研究
- 安全生產(chǎn)管理機(jī)構(gòu)設(shè)置及人員配備
- 2025年廣西高考地理真題(解析版)
- 2025-2030中國啤酒行業(yè)分銷渠道變革與經(jīng)銷商管理體系優(yōu)化報告
- 四川省德陽市2026屆數(shù)學(xué)八上期末綜合測試試題含解析
評論
0/150
提交評論