(完整版)人教版七年級數(shù)學(xué)下學(xué)期期末壓軸題練習(xí)(二)培優(yōu)試題_第1頁
(完整版)人教版七年級數(shù)學(xué)下學(xué)期期末壓軸題練習(xí)(二)培優(yōu)試題_第2頁
(完整版)人教版七年級數(shù)學(xué)下學(xué)期期末壓軸題練習(xí)(二)培優(yōu)試題_第3頁
(完整版)人教版七年級數(shù)學(xué)下學(xué)期期末壓軸題練習(xí)(二)培優(yōu)試題_第4頁
(完整版)人教版七年級數(shù)學(xué)下學(xué)期期末壓軸題練習(xí)(二)培優(yōu)試題_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

一、解答題1.如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限內(nèi)一點(diǎn),CB⊥y軸交y軸負(fù)半軸于B(0,b),且|a﹣3|+(b+4)2=0,S四邊形AOBC=16.(1)求點(diǎn)C的坐標(biāo).(2)如圖2,設(shè)D為線段OB上一動點(diǎn),當(dāng)AD⊥AC時(shí),∠ODA的角平分線與∠CAE的角平分線的反向延長線交于點(diǎn)P,求∠APD的度數(shù);(點(diǎn)E在x軸的正半軸).(3)如圖3,當(dāng)點(diǎn)D在線段OB上運(yùn)動時(shí),作DM⊥AD交BC于M點(diǎn),∠BMD、∠DAO的平分線交于N點(diǎn),則點(diǎn)D在運(yùn)動過程中,∠N的大小是否會發(fā)生變化?若不變化,求出其值;若變化,請說明理由.2.已知AB∥CD,線段EF分別與AB,CD相交于點(diǎn)E,F(xiàn).(1)請?jiān)跈M線上填上合適的內(nèi)容,完成下面的解答:如圖1,當(dāng)點(diǎn)P在線段EF上時(shí),已知∠A=35°,∠C=62°,求∠APC的度數(shù);解:過點(diǎn)P作直線PH∥AB,所以∠A=∠APH,依據(jù)是;因?yàn)锳B∥CD,PH∥AB,所以PH∥CD,依據(jù)是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)當(dāng)點(diǎn)P,Q在線段EF上移動時(shí)(不包括E,F(xiàn)兩點(diǎn)):①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立嗎?請說明理由;②如圖3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,請直接寫出∠M,∠A與∠C的數(shù)量關(guān)系.3.直線AB∥CD,點(diǎn)P為平面內(nèi)一點(diǎn),連接AP,CP.(1)如圖①,點(diǎn)P在直線AB,CD之間,當(dāng)∠BAP=60°,∠DCP=20°時(shí),求∠APC的度數(shù);(2)如圖②,點(diǎn)P在直線AB,CD之間,∠BAP與∠DCP的角平分線相交于K,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由;(3)如圖③,點(diǎn)P在直線CD下方,當(dāng)∠BAK=∠BAP,∠DCK=∠DCP時(shí),寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由.4.已知直線,點(diǎn)P為直線、所確定的平面內(nèi)的一點(diǎn).(1)如圖1,直接寫出、、之間的數(shù)量關(guān)系;(2)如圖2,寫出、、之間的數(shù)量關(guān)系,并證明;(3)如圖3,點(diǎn)E在射線上,過點(diǎn)E作,作,點(diǎn)G在直線上,作的平分線交于點(diǎn)H,若,,求的度數(shù).5.已知,AB∥CD,點(diǎn)E為射線FG上一點(diǎn).(1)如圖1,若∠EAF=25°,∠EDG=45°,則∠AED=.(2)如圖2,當(dāng)點(diǎn)E在FG延長線上時(shí),此時(shí)CD與AE交于點(diǎn)H,則∠AED、∠EAF、∠EDG之間滿足怎樣的關(guān)系,請說明你的結(jié)論;(3)如圖3,當(dāng)點(diǎn)E在FG延長線上時(shí),DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度數(shù).6.如圖,直線HDGE,點(diǎn)A在直線HD上,點(diǎn)C在直線GE上,點(diǎn)B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大小;(3)如圖3,點(diǎn)P是線段AB上一點(diǎn),PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關(guān)系,并說明理由.7.規(guī)定:求若干個(gè)相同的有理數(shù)(均不等于0)的除法運(yùn)算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作:“(﹣3)的圈4次方”.一般地,把個(gè)記作a?,讀作“a的圈n次方”(初步探究)(1)直接寫出計(jì)算結(jié)果:2③,(﹣)③.(深入思考)2④我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?(2)試一試,仿照上面的算式,將下列運(yùn)算結(jié)果直接寫成冪的形式.5⑥;(﹣)⑩.(3)猜想:有理數(shù)a(a≠0)的圈n(n≥3)次方寫成冪的形式等于多少.(4)應(yīng)用:求(-3)8×(-3)⑨-(﹣)9×(﹣)⑧8.我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:(p,q是正整數(shù),且),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的完美分解.并規(guī)定:.例如18可以分解成1×18,2×9或3×6,因?yàn)?8-1>9-2>6-3,所以3×6是18的完美分解,所以F(18)=.(1)F(13)=,F(xiàn)(24)=;(2)如果一個(gè)兩位正整數(shù)t,其個(gè)位數(shù)字是a,十位數(shù)字為,交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個(gè)數(shù)為“和諧數(shù)”,求所有“和諧數(shù)”;(3)在(2)所得“和諧數(shù)”中,求F(t)的最大值.9.已知,在計(jì)算:的過程中,如果存在正整數(shù),使得各個(gè)數(shù)位均不產(chǎn)生進(jìn)位,那么稱這樣的正整數(shù)為“本位數(shù)”.例如:2和30都是“本位數(shù)”,因?yàn)闆]有進(jìn)位,沒有進(jìn)位;15和91都不是“本位數(shù)”,因?yàn)椋瑐€(gè)位產(chǎn)生進(jìn)位,,十位產(chǎn)生進(jìn)位.則根據(jù)上面給出的材料:(1)下列數(shù)中,如果是“本位數(shù)”請?jiān)诤竺娴睦ㄌ杻?nèi)打“√”,如果不是“本位數(shù)”請?jiān)诤竺娴睦ㄌ杻?nèi)畫“×”.106();111();400();2015().(2)在所有的四位數(shù)中,最大的“本位數(shù)”是,最小的“本位數(shù)”是.(3)在所有三位數(shù)中,“本位數(shù)”一共有多少個(gè)?10.據(jù)說,我國著名數(shù)學(xué)家華羅庚在一次訪問途中,看到飛機(jī)鄰座的乘客閱讀的雜志上有一道智力題:一個(gè)數(shù)32768,它是一個(gè)正數(shù)的立方,希望求它的立方根,華羅庚不假思索給出了答案,鄰座乘客非常驚奇,很想得知其中的奧秘,你知道華羅庚是怎樣準(zhǔn)確計(jì)算出的嗎?請按照下面的問題試一試:(1)由,因?yàn)?,請確定是______位數(shù);(2)由32768的個(gè)位上的數(shù)是8,請確定的個(gè)位上的數(shù)是________,劃去32768后面的三位數(shù)768得到32,因?yàn)椋埓_定的十位上的數(shù)是_____________;(3)已知和分別是兩個(gè)數(shù)的立方,仿照上面的計(jì)算過程,請計(jì)算:;.11.我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:(p,q是正整數(shù),且),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的完美分解.并規(guī)定:.例如18可以分解成1×18,2×9或3×6,因?yàn)?8-1>9-2>6-3,所以3×6是18的完美分解,所以F(18)=.(1)F(13)=,F(xiàn)(24)=;(2)如果一個(gè)兩位正整數(shù)t,其個(gè)位數(shù)字是a,十位數(shù)字為,交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個(gè)數(shù)為“和諧數(shù)”,求所有“和諧數(shù)”;(3)在(2)所得“和諧數(shù)”中,求F(t)的最大值.12.如圖1,把兩個(gè)邊長為1的小正方形沿對角線剪開,所得的4個(gè)直角三角形拼成一個(gè)面積為2的大正方形.由此得到了一種能在數(shù)軸上畫出無理數(shù)對應(yīng)點(diǎn)的方法.(1)圖2中A、B兩點(diǎn)表示的數(shù)分別為___________,____________;(2)請你參照上面的方法:①把圖3中的長方形進(jìn)行剪裁,并拼成一個(gè)大正方形.在圖3中畫出裁剪線,并在圖4的正方形網(wǎng)格中畫出拼成的大正方形,該正方形的邊長___________.(注:小正方形邊長都為1,拼接不重疊也無空隙)②在①的基礎(chǔ)上,參照圖2的畫法,在數(shù)軸上分別用點(diǎn)M、N表示數(shù)a以及.(圖中標(biāo)出必要線段的長)13.如圖,以直角三角形AOC的直角頂點(diǎn)O為原點(diǎn),以O(shè)C、OA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點(diǎn)A(0,a),C(b,0)滿足+|b﹣2|=0,D為線段AC的中點(diǎn).在平面直角坐標(biāo)系中,以任意兩點(diǎn)P(x1,y1)、Q(x2,y2)為端點(diǎn)的線段中點(diǎn)坐標(biāo)為(,).(1)則A點(diǎn)的坐標(biāo)為;點(diǎn)C的坐標(biāo)為,D點(diǎn)的坐標(biāo)為.(2)已知坐標(biāo)軸上有兩動點(diǎn)P、Q同時(shí)出發(fā),P點(diǎn)從C點(diǎn)出發(fā)沿x軸負(fù)方向以1個(gè)單位長度每秒的速度勻速移動,Q點(diǎn)從O點(diǎn)出發(fā)以2個(gè)單位長度每秒的速度沿y軸正方向移動,點(diǎn)Q到達(dá)A點(diǎn)整個(gè)運(yùn)動隨之結(jié)束.設(shè)運(yùn)動時(shí)間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.(3)點(diǎn)F是線段AC上一點(diǎn),滿足∠FOC=∠FCO,點(diǎn)G是第二象限中一點(diǎn),連OG,使得∠AOG=∠AOF.點(diǎn)E是線段OA上一動點(diǎn),連CE交OF于點(diǎn)H,當(dāng)點(diǎn)E在線段OA上運(yùn)動的過程中,請確定∠OHC,∠ACE和∠OEC的數(shù)量關(guān)系,并說明理由.14.問題情境:(1)如圖1,,,.求度數(shù).小穎同學(xué)的解題思路是:如圖2,過點(diǎn)作,請你接著完成解答.問題遷移:(2)如圖3,,點(diǎn)在射線上運(yùn)動,當(dāng)點(diǎn)在、兩點(diǎn)之間運(yùn)動時(shí),,.試判斷、、之間有何數(shù)量關(guān)系?(提示:過點(diǎn)作),請說明理由;(3)在(2)的條件下,如果點(diǎn)在、兩點(diǎn)外側(cè)運(yùn)動時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)不重合),請你猜想、、之間的數(shù)量關(guān)系并證明.15.如圖,在平面直角坐標(biāo)系中,,CD//x軸,CD=AB.(1)求點(diǎn)D的坐標(biāo):(2)四邊形OCDB的面積四邊形OCDB;(3)在y軸上是否存在點(diǎn)P,使△PAB=四邊形OCDB;若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.16.請閱讀求絕對值不等式和的解的過程.對于絕對值不等式,從圖1的數(shù)軸上看:大于而小于的數(shù)的絕對值小于,所以的解為;對于絕對值不等式,從圖2的數(shù)軸上看:小于或大于的數(shù)的絕對值大于,所以的解為或.(1)求絕對值不等式的解(2)已知絕對值不等式的解為,求的值(3)已知關(guān)于,的二元一次方程組的解滿足,其中是負(fù)整數(shù),求的值.17.在平面直角坐標(biāo)系中,已知線段,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,如圖1所示.(1)平移線段到線段,使點(diǎn)的對應(yīng)點(diǎn)為,點(diǎn)的對應(yīng)點(diǎn)為,若點(diǎn)的坐標(biāo)為,求點(diǎn)的坐標(biāo);(2)平移線段到線段,使點(diǎn)在軸的正半軸上,點(diǎn)在第二象限內(nèi)(與對應(yīng),與對應(yīng)),連接如圖2所示.若表示△BCD的面積),求點(diǎn)、的坐標(biāo);(3)在(2)的條件下,在軸上是否存在一點(diǎn),使表示△PCD的面積)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.18.如圖,在平面直角坐標(biāo)系xOy中,對于任意兩點(diǎn)A(x1,y1)與B(x2,y2)的“非常距離”,給出如下定義:若|x1﹣x2|≥|y1﹣y2|,則點(diǎn)A與點(diǎn)B的“非常距離”為|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,則點(diǎn)A與點(diǎn)B的“非常距離”為|y1﹣y2|.(1)填空:已知點(diǎn)A(3,6)與點(diǎn)B(5,2),則點(diǎn)A與點(diǎn)B的“非常距離”為;(2)已知點(diǎn)C(﹣1,2),點(diǎn)D為y軸上的一個(gè)動點(diǎn).①若點(diǎn)C與點(diǎn)D的“非常距離”為2,求點(diǎn)D的坐標(biāo);②直接寫出點(diǎn)C與點(diǎn)D的“非常距離”的最小值.19.為了加強(qiáng)公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過6米3時(shí),水費(fèi)按a元/米3收費(fèi);每戶每月用水量超過6米3時(shí),不超過的部分每立方米仍按a元收費(fèi),超過的部分按c元/米3收費(fèi),該市某用戶今年3、4月份的用水量和水費(fèi)如下表所示:月份用水量(m3)收費(fèi)(元)357.54927(1)求a、c的值,并寫出每月用水量不超過6米3和超過6米3時(shí),水費(fèi)與用水量之間的關(guān)系式;(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi).20.李師傅要給-塊長9米,寬7米的長方形地面鋪瓷磚.如圖,現(xiàn)有A和B兩種款式的瓷磚,且A款正方形瓷磚的邊長與B款長方形瓷磚的長相等,B款瓷磚的長大于寬.已知一塊A款瓷磚和-塊B款瓷磚的價(jià)格和為140元;3塊A款瓷磚價(jià)格和4塊B款瓷磚價(jià)格相等.請回答以下問題:(1)分別求出每款瓷磚的單價(jià).(2)若李師傅買兩種瓷磚共花了1000元,且A款瓷磚的數(shù)量比B款多,則兩種瓷磚各買了多少塊?(3)李師傅打算按如下設(shè)計(jì)圖的規(guī)律進(jìn)行鋪瓷磚.若A款瓷磚的用量比B款瓷磚的2倍少14塊,且恰好鋪滿地面,則B款瓷磚的長和寬分別為_米(直接寫出答案).21.學(xué)校計(jì)劃為“我和我的祖國”演講比賽購買獎(jiǎng)品.已知購買3個(gè)A獎(jiǎng)品和2個(gè)B獎(jiǎng)品共需120元;購買5個(gè)A獎(jiǎng)品和4個(gè)B獎(jiǎng)品共需210元.(1)求A,B兩種獎(jiǎng)品的單價(jià);(2)學(xué)校準(zhǔn)備購買A,B兩種獎(jiǎng)品共30個(gè),且A獎(jiǎng)品的數(shù)量不少于B獎(jiǎng)品數(shù)量的.請?jiān)O(shè)計(jì)出最省錢的購買方案,并說明理由.22.已知,在平面直角坐標(biāo)系中,三角形三個(gè)頂點(diǎn)的坐標(biāo)分別為,,,軸,且、滿足.(1)則______;______;______;(2)如圖1,在軸上是否存在點(diǎn),使三角形的面積等于三角形的面積?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由;(3)如圖2,連接交于點(diǎn),點(diǎn)在軸上,若三角形的面積小于三角形的面積,直接寫出的取值范圍是______.23.如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中是二元一次方程組的解,過點(diǎn)作軸的平行線交軸于點(diǎn).(1)求點(diǎn)的坐標(biāo);(2)動點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長度的速度沿射線的方向運(yùn)動,連接,設(shè)點(diǎn)的運(yùn)動時(shí)間為秒,三角形的面積為,請用含的式子表示(不用寫出相應(yīng)的的取值范圍);(3)在(2)的條件下,在動點(diǎn)從點(diǎn)出發(fā)的同時(shí),動點(diǎn)從點(diǎn)出發(fā)以每秒個(gè)單位長度的速度沿線段的方向運(yùn)動.過點(diǎn)作直線的垂線,點(diǎn)為垂足;過點(diǎn)作直線的垂線,點(diǎn)為垂足.當(dāng)時(shí),求的值.24.若任意一個(gè)代數(shù)式,在給定的范圍內(nèi)求得的最大值和最小值恰好也在該范圍內(nèi),則稱這個(gè)代數(shù)式是這個(gè)范圍的“湘一代數(shù)式”.例如:關(guān)于x的代數(shù)式,當(dāng)1x1時(shí),代數(shù)式在x1時(shí)有最大值,最大值為1;在x0時(shí)有最小值,最小值為0,此時(shí)最值1,0均在1x1這個(gè)范圍內(nèi),則稱代數(shù)式是1x1的“湘一代數(shù)式”.(1)若關(guān)于的代數(shù)式,當(dāng)時(shí),取得的最大值為,最小值為,所以代數(shù)式(填“是”或“不是”)的“湘一代數(shù)式”.(2)若關(guān)于的代數(shù)式是的“湘一代數(shù)式”,求a的最大值與最小值.(3)若關(guān)于的代數(shù)式是的“湘一代數(shù)式”,求m的取值范圍.25.某數(shù)碼專營店銷售A,B兩種品牌智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如表所示:AB進(jìn)價(jià)(元/部)33003700售價(jià)(元/部)38004300(1)該店銷售記錄顯示,三月份銷售A、B兩種手機(jī)共34部,且銷售A種手機(jī)的利潤恰好是銷售B種手機(jī)利潤的2倍,求該店三月份售出A種手機(jī)和B種手機(jī)各多少部?(2)根據(jù)市場調(diào)研,該店四月份計(jì)劃購進(jìn)這兩種手機(jī)共40部,要求購進(jìn)B種手機(jī)數(shù)不低于A種手機(jī)數(shù)的,用于購買這兩種手機(jī)的資金低于140000元,請通過計(jì)算設(shè)計(jì)所有可能的進(jìn)貨方案.26.如圖,正方形ABCD的邊長是2厘米,E為CD的中點(diǎn),Q為正方形ABCD邊上的一個(gè)動點(diǎn),動點(diǎn)Q以每秒1厘米的速度從A出發(fā)沿運(yùn)動,最終到達(dá)點(diǎn)D,若點(diǎn)Q運(yùn)動時(shí)間為秒.(1)當(dāng)時(shí),平方厘米;當(dāng)時(shí),平方厘米;(2)在點(diǎn)Q的運(yùn)動路線上,當(dāng)點(diǎn)Q與點(diǎn)E相距的路程不超過厘米時(shí),求的取值范圍;(3)若的面積為平方厘米,直接寫出值.27.某小區(qū)準(zhǔn)備新建個(gè)停車位,以解決小區(qū)停車難的問題.已知新建個(gè)地上停車位和個(gè)地下停車位共需萬元:新建個(gè)地上停車位和個(gè)地下停車位共需萬元,(1)該小區(qū)新建個(gè)地上停車位和個(gè)地下停車位各需多少萬元?(2)若該小區(qū)新建車位的投資金額超過萬元而不超過萬元,問共有幾種建造方案?(3)對(2)中的幾種建造方案中,哪種方案的投資最少?并求出最少投資金額.28.對于三個(gè)數(shù),,,表示,,這三個(gè)數(shù)的平均數(shù),表示,,這三個(gè)數(shù)中最小的數(shù),如:,;,.解決下列問題:(1)填空:______;(2)若,求的取值范圍;(3)①若,那么______;②根據(jù)①,你發(fā)現(xiàn)結(jié)論“若,那么______”(填,,大小關(guān)系);③運(yùn)用②解決問題:若,求的值.29.如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別為(1,0)、(-2,0),現(xiàn)同時(shí)將點(diǎn)分別向上平移2個(gè)單位,再向左平移1個(gè)單位,分別得到點(diǎn)的對應(yīng)點(diǎn),連接、、.(1)若在軸上存在點(diǎn),連接,使S△ABM=S□ABDC,求出點(diǎn)的坐標(biāo);(2)若點(diǎn)在線段上運(yùn)動,連接,求S=S△PCD+S△POB的取值范圍;(3)若在直線上運(yùn)動,請直接寫出的數(shù)量關(guān)系.30.我區(qū)防汛指揮部在一河道的危險(xiǎn)地帶兩岸各安置一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈光射線自順時(shí)針旋轉(zhuǎn)至便立即逆時(shí)針旋轉(zhuǎn)至,如此循環(huán)燈光射線自順時(shí)針旋轉(zhuǎn)至便立即逆時(shí)針旋轉(zhuǎn)至,如此循環(huán).兩燈交叉照射且不間斷巡視.若燈轉(zhuǎn)動的速度是度/秒,燈轉(zhuǎn)動的速度是度/秒,且,滿足.若這一帶江水兩岸河堤相互平行,即,且.根據(jù)相關(guān)信息,解答下列問題.(1)__________,__________.(2)若燈的光射線先轉(zhuǎn)動24秒,燈的光射線才開始轉(zhuǎn)動,在燈的光射線到達(dá)之前,燈轉(zhuǎn)動幾秒,兩燈的光射線互相平行?(3)如圖2,若兩燈同時(shí)開始轉(zhuǎn)動照射,在燈的光射線到達(dá)之前,若兩燈射出的光射線交于點(diǎn),過點(diǎn)作交于點(diǎn),則在轉(zhuǎn)動的過程中,與間的數(shù)量關(guān)系是否發(fā)生變化?若不變,請求出這兩角間的數(shù)量關(guān)系;若改變,請求出各角的取值范圍.【參考答案】***試卷處理標(biāo)記,請不要?jiǎng)h除一、解答題1.(1)C(5,﹣4);(2)90°;(3)見解析.【詳解】分析:(1)利用非負(fù)數(shù)的和為零,各項(xiàng)分別為零,求出a,b即可;(2)用同角的余角相等和角平分線的意義即可;(3)利用角平分線的意義和互余兩角的關(guān)系簡單計(jì)算證明即可.詳解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四邊形AOBC=16.∴0.5(OA+BC)×OB=16,∴0.5(3+BC)×4=16,∴BC=5,∵C是第四象限一點(diǎn),CB⊥y軸,∴C(5,﹣4);(2)如圖,延長CA,∵AF是∠CAE的角平分線,∴∠CAF=0.5∠CAE,∵∠CAE=∠OAG,∴∠CAF=0.5∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=0.5∠ADO,∵DP是∠ODA的角平分線,∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不變,∠ANM=45°理由:如圖,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分線,∴∠DAN=0.5∠DAO=0.5∠BDM,∵CB⊥y軸,∴∠BDM+∠BMD=90°,∴∠DAN=0.5(90°﹣∠BMD),∵M(jìn)N是∠BMD的角平分線,∴∠DMN=0.5∠BMD,∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D點(diǎn)在運(yùn)動過程中,∠N的大小不變,求出其值為45°點(diǎn)睛:此題是四邊形綜合題,主要考查了非負(fù)數(shù)的性質(zhì),四邊形面積的計(jì)算方法,角平分線的意義,解本題的關(guān)鍵是用整體的思想解決問題,也是本題的難點(diǎn).2.(1)兩直線平行,內(nèi)錯(cuò)角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見解答過程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根據(jù)平行線的判定與性質(zhì)即可完成填空;(2)結(jié)合(1)的輔助線方法即可完成證明;(3)結(jié)合(1)(2)的方法,根據(jù)∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可證明∠PMQ,∠A與∠C的數(shù)量關(guān)系.【詳解】解:過點(diǎn)P作直線PH∥AB,所以∠A=∠APH,依據(jù)是兩直線平行,內(nèi)錯(cuò)角相等;因?yàn)锳B∥CD,PH∥AB,所以PH∥CD,依據(jù)是平行于同一條直線的兩條直線平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案為:兩直線平行,內(nèi)錯(cuò)角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:過點(diǎn)P作直線PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如圖3,過點(diǎn)P作直線PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【點(diǎn)睛】考核知識點(diǎn):平行線的判定和性質(zhì).熟練運(yùn)用平行線性質(zhì)和判定,添加適當(dāng)輔助線是關(guān)鍵.3.(1)80°;(2)∠AKC=∠APC,理由見解析;(3)∠AKC=∠APC,理由見解析【分析】(1)先過P作PE∥AB,根據(jù)平行線的性質(zhì)即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據(jù)∠APC=∠APE+∠CPE=∠BAP+∠DCP進(jìn)行計(jì)算即可;(2)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,進(jìn)而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根據(jù)角平分線的定義,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,進(jìn)而得到∠AKC=∠APC;(3)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,進(jìn)而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根據(jù)已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,進(jìn)而得到∠BAK﹣∠DCK=∠APC.【詳解】(1)如圖1,過P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=∠APC.理由:如圖2,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP與∠DCP的角平分線相交于點(diǎn)K,∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC;(3)∠AKC=∠APC理由:如圖3,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=∠BAP,∠DCK=∠DCP,∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.【點(diǎn)睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是作出平行線構(gòu)造內(nèi)錯(cuò)角相等計(jì)算.4.(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點(diǎn)P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補(bǔ),即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點(diǎn)P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點(diǎn)睛】此題考查了平行線的性質(zhì)以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.5.(1)70°;(2),證明見解析;(3)122°【分析】(1)過作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過過作,根據(jù)平行線的性質(zhì)得到,,即;(3)設(shè),則,通過三角形內(nèi)角和得到,由角平分線定義及得到,求出的值再通過三角形內(nèi)角和求.【詳解】解:(1)過作,,,,,,故答案為:;(2).理由如下:過作,,,,,,,;(3),設(shè),則,,,又,,,平分,,,,即,解得,,.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和判定,正確做出輔助線是解決問題的關(guān)鍵.6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后結(jié)果;(2)過B作BPHDGE,過F作FQHDGE,由平行線的性質(zhì)得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質(zhì)和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結(jié)果;(3)過P作PKHDGE,先由平行線的性質(zhì)證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線求得∠NPC與∠PCN,由后由三角形內(nèi)角和定理便可求得結(jié)果.【詳解】解:(1)過點(diǎn)B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過B作BPHDGE,過F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點(diǎn)睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).7.(1),-2;(2)()4,(﹣2)8;(3);(4).【分析】(1)分別按公式進(jìn)行計(jì)算即可;(2)把除法化為乘法,第一個(gè)數(shù)不變,從第二個(gè)數(shù)開始依次變?yōu)榈箶?shù),由此分別得出結(jié)果;(3)結(jié)果前兩個(gè)數(shù)相除為1,第三個(gè)數(shù)及后面的數(shù)變?yōu)?,則a?=a×()n-1;(4)將第二問的規(guī)律代入計(jì)算,注意運(yùn)算順序.【詳解】解:(1)2③=2÷2÷2=,(﹣)③=﹣÷(﹣)÷(﹣)=﹣2;(2)5⑥=5×××××=()4,同理得;(﹣)⑩=(﹣2)8;(3)a?=a×××…×;(4)(-3)8×(-3)⑨-(﹣)9×(﹣)⑧=(-3)8×()7-(﹣)9×(-2)6=-3-(-)3=-3+=.【點(diǎn)睛】本題是有理數(shù)的混合運(yùn)算,也是一個(gè)新定義的理解與運(yùn)用;一方面考查了有理數(shù)的乘除法及乘方運(yùn)算,另一方面也考查了學(xué)生的閱讀理解能力;注意:負(fù)數(shù)的奇數(shù)次方為負(fù)數(shù),負(fù)數(shù)的偶數(shù)次方為正數(shù),同時(shí)也要注意分?jǐn)?shù)的乘方要加括號,對新定義,其實(shí)就是多個(gè)數(shù)的除法運(yùn)算,要注意運(yùn)算順序.8.(1),(2)所以和諧數(shù)為15,26,37,48,59;(3)F(t)的最大值是.【分析】(1)根據(jù)題意,按照新定義的法則計(jì)算即可.(2)根據(jù)新定義的”和諧數(shù)”定義,將數(shù)用a,b表示列出式子解出即可.(3)根據(jù)(2)中計(jì)算的結(jié)果求出最大即可.【詳解】解:(1)F(13)=,F(xiàn)(24)=;(2)原兩位數(shù)可表示為新兩位數(shù)可表示為∴∴∴∴∴(且b為正整數(shù))∴b=2,a=5;b=3,a=6,b=4,a=7,b=5,a=8b=6,a=9所以和諧數(shù)為15,26,37,48,59(3)所有“和諧數(shù)”中,F(xiàn)(t)的最大值是.【點(diǎn)睛】本題為新定義的題型,關(guān)鍵在于讀懂題意,按照規(guī)定解題.9.(1)×,√,×,×;(2)3332;1000;(3)(個(gè)).【分析】(1)根據(jù)“本位數(shù)”的定義即可判斷;(2)要想保證不進(jìn)位,千位、百位、十位最大只能是3,個(gè)位最大只能是2,故最大的四位“本位數(shù)”是3332;千位最小為1,百位、十位、個(gè)位最小為0,故最小的“本位數(shù)”是1000;(3)要想構(gòu)成“本位數(shù)”,百位可以為1,2,3,十位可以為0,1,2,3,個(gè)位可以為0,1,2,所有的三位數(shù)中,“本位數(shù)”一共有(個(gè)).【詳解】解:(1)有進(jìn)位;沒有進(jìn)位;有進(jìn)位;有進(jìn)位;故答案為:×,√,×,×.(2)要想保證不進(jìn)位,千位、百位、十位最大只能是3,個(gè)位最大只能是2,故最大的四位“本位數(shù)”是3332;千位最小為1,百位、十位、個(gè)位最小為0,故最小的“本位數(shù)”是1000,故答案為:3332,1000.(3)要想構(gòu)成“本位數(shù)”,百位可以為1,2,3,十位可以為0,1,2,3,個(gè)位可以為0,1,2,所有的三位數(shù)中,“本位數(shù)”一共有(個(gè)).【點(diǎn)睛】本題考查了新定義計(jì)算題,準(zhǔn)確理解新定義的內(nèi)涵是解題的關(guān)鍵.10.(1)兩;(2)2,3;(3)24,﹣48;【分析】(1)由題意可得,進(jìn)而可得答案;(2)由只有個(gè)位數(shù)是2的數(shù)的立方的個(gè)位數(shù)是8,可確定的個(gè)位上的數(shù),由可得27<32<64,進(jìn)而可確定,于是可確定的十位上的數(shù),進(jìn)而可得答案;(3)仿照(1)(2)兩小題中的方法解答即可.【詳解】解:(1)因?yàn)椋?,所以是一個(gè)兩位數(shù);故答案為:兩;(2)因?yàn)橹挥袀€(gè)位數(shù)是2的數(shù)的立方的個(gè)位數(shù)是8,所以的個(gè)位上的數(shù)是2,劃去32768后面的三位數(shù)768得到32,因?yàn)椋?7<32<64,所以,所以的十位上的數(shù)是3;故答案為:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10<<100,∴是兩位數(shù);∵只有個(gè)位數(shù)是4的數(shù)的立方的個(gè)位數(shù)是4,∴的個(gè)位上的數(shù)是4,劃去13824后面的三位數(shù)824得到13,∵8<13<27,∴20<<30.∴=24;由103=1000,1003=1000000,1000<110592<1000000,∴10<<100,∴是兩位數(shù);∵只有個(gè)位數(shù)是8的數(shù)的立方的個(gè)位數(shù)是2,∴的個(gè)位上的數(shù)是8,劃去110592后面的三位數(shù)592得到110,∵64<110<125,∴40<<50,∴;∴=﹣48.【點(diǎn)睛】本題考查了立方根和立方數(shù)的規(guī)律探求,具有一定的難度,正確理解題意、確定所求的數(shù)的個(gè)位數(shù)字和十位數(shù)字是解題的關(guān)鍵.11.(1),(2)所以和諧數(shù)為15,26,37,48,59;(3)F(t)的最大值是.【分析】(1)根據(jù)題意,按照新定義的法則計(jì)算即可.(2)根據(jù)新定義的”和諧數(shù)”定義,將數(shù)用a,b表示列出式子解出即可.(3)根據(jù)(2)中計(jì)算的結(jié)果求出最大即可.【詳解】解:(1)F(13)=,F(xiàn)(24)=;(2)原兩位數(shù)可表示為新兩位數(shù)可表示為∴∴∴∴∴(且b為正整數(shù))∴b=2,a=5;b=3,a=6,b=4,a=7,b=5,a=8b=6,a=9所以和諧數(shù)為15,26,37,48,59(3)所有“和諧數(shù)”中,F(xiàn)(t)的最大值是.【點(diǎn)睛】本題為新定義的題型,關(guān)鍵在于讀懂題意,按照規(guī)定解題.12.(1),;(2)①圖見解析,;②見解析【分析】(1)根據(jù)圖1得到小正方形的對角線長,即可得出數(shù)軸上點(diǎn)A和點(diǎn)B表示的數(shù)(2)根據(jù)長方形的面積得正方形的面積,即可得到正方形的邊長,再畫出圖象即可;(3)從原點(diǎn)開始畫一個(gè)長是2,高是1的長方形,對角線長即是a,再用圓規(guī)以這個(gè)長度畫弧,交數(shù)軸于點(diǎn)M,再把這個(gè)長方形向左平移3個(gè)單位,用同樣的方法得到點(diǎn)N.【詳解】(1)由圖1知,小正方形的對角線長是,∴圖2中點(diǎn)A表示的數(shù)是,點(diǎn)B表示的數(shù)是,故答案是:,;(2)①長方形的面積是5,拼成的正方形的面積也應(yīng)該是5,∴正方形的邊長是,如圖所示:故答案是:;②如圖所示:【點(diǎn)睛】本題考查無理數(shù)的表示方法,解題的關(guān)鍵是理解題意,模仿題目中給出的解題方法進(jìn)行求解.13.(1),,;(2)存在,;(3)【分析】(1)根據(jù)絕對值和算術(shù)平方根的非負(fù)性,求得a,b的值,得出點(diǎn)A,C的坐標(biāo),再運(yùn)用中點(diǎn)公式求出點(diǎn)D的坐標(biāo);(2)根據(jù)題意可得CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根據(jù)S△ODP=S△ODQ,列方程求解即可;(3)過點(diǎn)H作HP∥AC交x軸于點(diǎn)P,先證明OG∥AC,再根據(jù)角的和差關(guān)系以及平行線性質(zhì),得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入可得.【詳解】解:(1),,,,,,,設(shè),為線段的中點(diǎn).,,,故答案為:,,;(2)存在,.由條件可知:點(diǎn)從點(diǎn)運(yùn)動到點(diǎn)需要時(shí)間為2秒,點(diǎn)從點(diǎn)運(yùn)動到點(diǎn)需要時(shí)間2秒,,點(diǎn)在線段上,,,,,,,,,.(3)如圖2,,,,,,,,如圖,過點(diǎn)作交軸于點(diǎn),則,,,,∴.【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形面積,非負(fù)數(shù)的性質(zhì),中點(diǎn)坐標(biāo)公式等,是一道三角形綜合題,解題關(guān)鍵是學(xué)會添加輔助線,運(yùn)用轉(zhuǎn)化的思想思考問題.14.(1)見解析;(2),理由見解析;(3)①當(dāng)在延長線時(shí)(點(diǎn)不與點(diǎn)重合),;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=113°;(2)過過作交于,,推出,根據(jù)平行線的性質(zhì)得出,即可得出答案;(3)畫出圖形(分兩種情況:①點(diǎn)P在BA的延長線上,②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合)),根據(jù)平行線的性質(zhì)即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當(dāng)在延長線時(shí)(點(diǎn)不與點(diǎn)重合),;理由:如圖4,過作交于,,,,,,,,又,;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由:如圖5,過作交于,,,,,,,,又.【點(diǎn)睛】本題考查了平行線的性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯(cuò)角以及同旁內(nèi)角.15.(1)(2)7(3)點(diǎn)的坐標(biāo)為或【詳解】試題分析:⑴抓住∥軸,可以推出縱坐標(biāo)相等,而是橫坐標(biāo)之差的絕對值,以此可以求出點(diǎn)的坐標(biāo),根據(jù)圖示要舍去一種情況.⑵四邊形是梯形,根據(jù)點(diǎn)的坐標(biāo)可以求出此梯形的上、下底和高,面積可求.⑶存在性問題可以先假設(shè)存在,在假設(shè)的基礎(chǔ)上以△=四邊形為等量關(guān)系建立方程,以此來探討在軸上是否存在著符合條件的點(diǎn).試題解析:⑴.∵∥軸,∴縱坐標(biāo)相等;∵∴點(diǎn)的縱坐標(biāo)也為2.設(shè)點(diǎn)的坐標(biāo)為,則.又,且,∴,解得:.由于點(diǎn)在第一象限,所以,所以的坐標(biāo)為.⑵.∵∥軸,且∴∴四邊形=.⑶.假設(shè)在軸上存在點(diǎn),使△=四邊形.設(shè)的坐標(biāo)為,則,而∴△=.∵△=四邊形,四邊形∴,解得;.均符合題意.∴在軸上存在點(diǎn),使△=四邊形.點(diǎn)的坐標(biāo)為或.16.(1)x>5或x<1;(2)9;(3)m=-3或m=-2或m=-1【分析】(1)由絕對值的幾何意義即可得出答案;(2)由知,據(jù)此得出,再結(jié)合可得出關(guān)于、的方程組,解之即可求出、的值,從而得出答案;(3)兩個(gè)方程相加化簡得出,由知,據(jù)此得出,解之求出的取值范圍,繼而可得答案.【詳解】解:(1)根據(jù)絕對值的定義得:或,解得或;(2),,解得,解集為,,解得,則;(3)兩個(gè)方程相加,得:,,,,,解得,又是負(fù)整數(shù),或或.【點(diǎn)睛】本題主要考查解一元一次不等式,解題的關(guān)鍵是掌握絕對值的幾何意義及解一元一次不等式和不等式組的能力.17.(1);(2);(3)存在點(diǎn),其坐標(biāo)為或.【分析】(1)利用平移得性質(zhì)確定出平移得單位和方向;(2)根據(jù)平移得性質(zhì),設(shè)出平移單位,根據(jù)S△BCD=7(S△BCD建立方程求解,即可);(3)設(shè)出點(diǎn)P的坐標(biāo),表示出PC用,建立方程求解即可.【詳解】(1)∵B(3,0)平移后的對應(yīng)點(diǎn),∴設(shè),∴即線段向左平移5個(gè)單位,再向上平移4個(gè)單位得到線段∴點(diǎn)平移后的對應(yīng)點(diǎn);(2)∵點(diǎn)C在軸上,點(diǎn)D在第二象限,∴線段向左平移3個(gè)單位,再向上平移個(gè)單位,∴連接,,∴∴;(3)存在設(shè)點(diǎn),∴∵,∴∴,∴∴存在點(diǎn),其坐標(biāo)為或.【點(diǎn)睛】本題考查了線段平移的性質(zhì),解題的關(guān)鍵在利用平移的性質(zhì),得到點(diǎn)坐標(biāo)的關(guān)系、圖形面積的關(guān)系,根據(jù)面積的關(guān)系,從而求出點(diǎn)的坐標(biāo).18.(1)4;(2)①或;②1.【分析】(1)依照題意,分別求出和,比較大小,得出答案,(2)點(diǎn)在軸上所以橫坐標(biāo)為0,,所以點(diǎn)和點(diǎn)的縱坐標(biāo)差的絕對值應(yīng)為2,可得點(diǎn)坐標(biāo),(3)已知點(diǎn)和點(diǎn)的橫坐標(biāo)差的絕對值恒等于1,縱坐標(biāo)差的絕對是個(gè)動點(diǎn)問題,取值范圍和1比較,可得出最小值為1.【詳解】解:(1),,,,點(diǎn)與點(diǎn)的“非常距離”為4.故答案為:4.(2)①點(diǎn)在軸上所以橫坐標(biāo)為0,點(diǎn)和點(diǎn)的縱坐標(biāo)差的絕對值應(yīng)為2,設(shè)點(diǎn)的縱坐標(biāo)為,,解得或,點(diǎn)的坐標(biāo)為或,故點(diǎn)的坐標(biāo)為或;②最小值為1,理由為已知點(diǎn)和點(diǎn)的橫坐標(biāo)差的絕對值恒等于1,,設(shè)點(diǎn)的縱坐標(biāo)為,當(dāng)時(shí),,可得點(diǎn)與點(diǎn)的“非常距離”為1,當(dāng)或時(shí),,可得點(diǎn)與點(diǎn)的“非常距離”為.,點(diǎn)與點(diǎn)的“非常距離”的最小值為1,故點(diǎn)與點(diǎn)的“非常距離”的最小值為1.【點(diǎn)睛】本題考查了直角坐標(biāo)系坐標(biāo)結(jié)合絕對值的應(yīng)用,是新定義問題,難點(diǎn)在于第三問的動點(diǎn)位置取值范圍討論,需要學(xué)生根據(jù)題意正確討論.19.(1);0≤x≤6時(shí),y=1.5x;x>6時(shí),y=6x-27;(2)該戶5月份水費(fèi)是21元.【分析】(1)根據(jù)3、4兩個(gè)月的用水量和相應(yīng)水費(fèi)列方程組求解可得a、c的值;當(dāng)0≤x≤6時(shí),水費(fèi)=用水量×此時(shí)單價(jià);當(dāng)x>6時(shí),水費(fèi)=前6立方水費(fèi)+超出部分水費(fèi),據(jù)此列式即可;(2)x=8代入x>6時(shí)y與x的函數(shù)關(guān)系式求解即可.【詳解】解:(1)根據(jù)題意,得:,解得:;當(dāng)0≤x≤6時(shí),y=1.5x;當(dāng)x>6時(shí),y=1.5×6+6(x-6)=6x-27;(2)當(dāng)x=8時(shí),y=6x-27=6×8-27=21.答:若某戶5月份的用水量為8米3,該戶5月份水費(fèi)是21元.【點(diǎn)睛】本題主要考查利用一次函數(shù)的模型解決實(shí)際問題的能力.要先根據(jù)題意列出函數(shù)關(guān)系式,再代數(shù)求值.解題的關(guān)鍵是要分析題意根據(jù)實(shí)際意義準(zhǔn)確的列出解析式,再把對應(yīng)值代入求解.20.(1)A款瓷磚單價(jià)為80元,B款單價(jià)為60元.(2)買了11塊A款瓷磚,2塊B款;或8塊A款瓷磚,6塊B款.(3)B款瓷磚的長和寬分別為1,或1,.【分析】(1)設(shè)A款瓷磚單價(jià)x元,B款單價(jià)y元,根據(jù)“一塊A款瓷磚和一塊B款瓷磚的價(jià)格和為140元;3塊A款瓷磚價(jià)格和4塊B款瓷磚價(jià)格相等”列出二元一次方程組,求解即可;(2)設(shè)A款買了m塊,B款買了n塊,且m>n,根據(jù)共花1000元列出二元一次方程,求出符合題意的整數(shù)解即可;(3)設(shè)A款正方形瓷磚邊長為a米,B款長為a米,寬b米,根據(jù)圖形以及“A款瓷磚的用量比B款瓷磚的2倍少14塊”可列出方程求出a的值,然后由是正整教分情況求出b的值.【詳解】解:(1)設(shè)A款瓷磚單價(jià)x元,B款單價(jià)y元,則有,解得,答:A款瓷磚單價(jià)為80元,B款單價(jià)為60元;(2)設(shè)A款買了m塊,B款買了n塊,且m>n,則80m+60n=1000,即4m+3n=50∵m,n為正整數(shù),且m>n∴m=11時(shí)n=2;m=8時(shí),n=6,答:買了11塊A款瓷磚,2塊B款瓷磚或8塊A款瓷磚,6塊B款瓷磚;(3)設(shè)A款正方形瓷磚邊長為a米,B款長為a米,寬b米.由題意得:,解得a=1.由題可知,是正整教.設(shè)(k為正整數(shù)),變形得到,當(dāng)k=1時(shí),,故合去),當(dāng)k=2時(shí),,故舍去),當(dāng)k=3時(shí),,當(dāng)k=4時(shí),,答:B款瓷磚的長和寬分別為1,或1,.【點(diǎn)睛】本題主要考查了二元一次方程組的實(shí)際應(yīng)用,(1)(2)較為簡單,(3)中利用數(shù)形結(jié)合的思想,找出其中兩款瓷磚的數(shù)量與圖形之間的規(guī)律是解題的關(guān)鍵.21.(1)A的單價(jià)30元,B的單價(jià)15元(2)購買A獎(jiǎng)品8個(gè),購買B獎(jiǎng)品22個(gè),花費(fèi)最少【分析】(1)設(shè)A的單價(jià)為x元,B的單價(jià)為y元,根據(jù)題意列出方程組,即可求解;(2)設(shè)購買A獎(jiǎng)品z個(gè),則購買B獎(jiǎng)品為個(gè),購買獎(jiǎng)品的花費(fèi)為W元,根據(jù)題意得到由題意可知,,,根據(jù)一次函數(shù)的性質(zhì),即可求解;【詳解】解:(1)設(shè)A的單價(jià)為x元,B的單價(jià)為y元,根據(jù)題意,得,,A的單價(jià)30元,B的單價(jià)15元;(2)設(shè)購買A獎(jiǎng)品z個(gè),則購買B獎(jiǎng)品為個(gè),購買獎(jiǎng)品的花費(fèi)為W元,由題意可知,,,,當(dāng)時(shí),W有最小值為570元,即購買A獎(jiǎng)品8個(gè),購買B獎(jiǎng)品22個(gè),花費(fèi)最少;【點(diǎn)睛】本題考查二元一次方程組的應(yīng)用,一次函數(shù)的應(yīng)用;能夠根據(jù)條件列出方程組,將最優(yōu)方案轉(zhuǎn)化為一次函數(shù)性質(zhì)解題是關(guān)鍵.22.(1)?3,4,4;(2)(0,)或(0,);(3)n<?5或n>?1【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)構(gòu)建方程組,求出a和b,再根據(jù)BC∥x軸,可得c的值;(2)當(dāng)點(diǎn)D在直線AB的下方時(shí),如圖1?1中,延長BC交y軸于E(0,4),連接AE.設(shè)D(0,m).當(dāng)點(diǎn)D在直線AB的上方時(shí),如圖1?2中,連接OB,設(shè)D(0,m).分別構(gòu)建方程,可得結(jié)論.(3)如圖2中,當(dāng)點(diǎn)N在點(diǎn)A的右側(cè)時(shí),連接MN,OB,設(shè)M(a,b),利用面積法求出b的值,再求出S△BNM=S△BCM時(shí),n的值,同法求出當(dāng)點(diǎn)N在點(diǎn)的左側(cè)時(shí),且S△BNM=S△BCM時(shí),n的值,結(jié)合圖象可得結(jié)論.【詳解】解:(1)∵,又∵≥0,|2a?b+10|≥0,∴a+b?1=0且2a?b+10=0,∴a=?3,b=4,∵BC∥x軸,∴c=4,∴a=?3,b=4,c=4,故答案為:?3,4,4;(2)當(dāng)點(diǎn)D在直線AB的下方時(shí),如圖1?1中,延長BC交y軸于E(0,4),連接AE.設(shè)D(0,m).∵S△ABD=S△AED+S△BDE?S△ABE=S△ABC,∴×(4?m)×3+×(4?m)×4?×4×4=×2×4,∴m=;當(dāng)點(diǎn)D在直線AB的上方時(shí),如圖1?2中,連接OB,設(shè)D(0,m).∵S△ABD=S△ADO+S△ODB?S△ABO=S△ABC,∴×m×3+×m×4?×3×4=×2×4,∴m=.綜上所述,滿足條件的點(diǎn)D的坐標(biāo)為(0,)或(0,).(3)如圖2中,當(dāng)點(diǎn)N點(diǎn)A的右側(cè)時(shí),連接MN,OB.設(shè)M(a,b),∵S△BCM=S△OBC?(S△AOB?S△AOM),∴×2×(4?b)=×2×4?(×3×4?12×3×b),解得b=,當(dāng)S△BNM=S△BCM時(shí),則有×(n+3)×4?×(n+3)×=×2×(4?),解得n=?1,當(dāng)點(diǎn)N在點(diǎn)A的左側(cè)時(shí),且S△BNM=S△BCM時(shí),同法可得n=?5,觀察圖象可知,滿足條件的n的值為n<?5或n>?1.【點(diǎn)睛】本題屬于三角形綜合題,考查了三角形的面積,非負(fù)數(shù)的性質(zhì),平行線的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,學(xué)會利用未知數(shù)構(gòu)建方程解決問題,對于初一學(xué)生來說題目有一定的難度.23.(1);(2);(3)或4.【分析】(1)先求出是二元一次方程組的解,然后代入A、B的坐標(biāo)即可解答;(2)先求出OC的長,分點(diǎn)P在線段OB上和OB的延長線上兩種情況,分別利用三角形面積公式計(jì)算即可;(3)分兩種情況解答:①當(dāng)點(diǎn)P在線段OB上時(shí),連接PQ,過點(diǎn)M作PM⊥AC交AC的延長線于M,可得OP=2CQ,構(gòu)建方程解答即可;②當(dāng)點(diǎn)P在BO的延長線上時(shí),同理可解.【詳解】解:(1)解二元一次方程組,得:∴A(6,7),B(-8,0);(2)①當(dāng)點(diǎn)P在線段OB上時(shí),BP=4t,OP=8-4t,∴②當(dāng)點(diǎn)P在OB延長線上時(shí),綜上所述;(3)①當(dāng)點(diǎn)P在線段OB上時(shí),如圖:連接PQ,過點(diǎn)M作PM⊥AC交AC的延長線于M,又;②當(dāng)在線段延長線上時(shí)同理可得:.綜上,滿足題意t的值為或4.【點(diǎn)睛】本題主要考查了三角形的面積、二元一次方程組等知識點(diǎn),學(xué)會用分類討論的思想思考問題以及利用面積法解決線段之間的關(guān)系成為解答本題的關(guān)鍵.24.(1)是.(2)a的最大值為,最小值為;(3)【分析】(1)先求解當(dāng)時(shí),的最大值與最小值,再根據(jù)定義判斷即可;(2)當(dāng)時(shí),得分<,分別求解在內(nèi)時(shí)的最大值與最小值,再列不等式組即可得到答案;(3)當(dāng)時(shí),分,兩種情況分別求解的最大值與最小值,再列不等式(組)求解即可.【詳解】解:(1)當(dāng)時(shí),取最大值,當(dāng)時(shí),取最小值所以代數(shù)式是的“湘一代數(shù)式”.故答案為:是.(2)∵,∴0≤|x|≤2,∴①當(dāng)a≥0時(shí),x=0時(shí),有最大值為,x=2或-2時(shí),有最小值為所以可得不等式組,由①得:由②得:所以:②a<0時(shí),x=0時(shí),有最小值為,x=2或-2時(shí),的有大值為所以可得不等式組,由①得:由②得:所以:<,綜上①②可得,所以a的最大值為,最小值為.(3)是的“湘一代數(shù)式”,當(dāng)時(shí),的最大值是最小值是當(dāng)時(shí),當(dāng)時(shí),取最小值當(dāng)時(shí),取最大值,解得:綜上:的取值范圍是:【點(diǎn)睛】本題考查的是新定義情境下的不等式或不等式組的應(yīng)用,理解定義列不等式(組)是解題的關(guān)鍵.25.(1)該店三月份售出A種手機(jī)24部,B種手機(jī)10部;(2)共有5種進(jìn)貨方案,分別是A種手機(jī)21部,B種手機(jī)19部;A種手機(jī)22部,B種手機(jī)18部;A種手機(jī)23部,B種手機(jī)17部;A種手機(jī)24部,B種手機(jī)16部;A種手機(jī)25部,B種手機(jī)15部【分析】(1)設(shè)該店三月份售出A種手機(jī)x部,B種手機(jī)y部,由“三月份銷售A、B兩種手機(jī)共34部,且銷售A種手機(jī)的利潤恰好是銷售B種手機(jī)利潤的2倍”列出方程組,可求解;(2)設(shè)A種手機(jī)a部,B種手機(jī)(40﹣a)部,由“購進(jìn)B種手機(jī)數(shù)不低于A種手機(jī)數(shù)的,用于購買這兩種手機(jī)的資金低于140000元”列出不等式組,即可求解.【詳解】解:(1)設(shè)該店三月份售出A種手機(jī)x部,B種手機(jī)y部,由題意可得:,解得:,答:該店三月份售出A種手機(jī)24部,B種手機(jī)10部;(2)設(shè)A種手機(jī)a部,B種手機(jī)(40﹣a)部,由題意可得,解得:20<a≤25,∵a為整數(shù),∴a=21,22,23,24,25,∴共有5種進(jìn)貨方案,分別是A種手機(jī)21部,B種手機(jī)19部;A種手機(jī)22部,B種手機(jī)18部;A種手機(jī)23部,B種手機(jī)17部;A種手機(jī)24部,B種手機(jī)16部;A種手機(jī)25部,B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論