版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省共青城市中考數(shù)學考試綜合練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、下列一元二次方程中,有兩個不相等實數(shù)根的是(
)A. B.x2+2x+4=0 C.x2-x+2=0 D.x2-2x=02、下列方程中,一定是關于x的一元二次方程的是(
)A. B.C. D.3、把圖中的交通標志圖案繞著它的中心旋轉一定角度后與自身重合,則這個旋轉角度至少為(
)A.30° B.90° C.120° D.180°4、小穎有兩頂帽子,分別為紅色和黑色,有三條圍巾,分別為紅色、黑色和白色,她隨機拿出一頂帽子和一條圍巾戴上,恰好為紅色帽子和紅色圍巾的概率是(
)A. B. C. D.5、若點P(2,)與點Q(,)關于原點對稱,則m+n的值分別為(
)A. B. C.1 D.5二、多選題(5小題,每小題3分,共計15分)1、下列說法中,正確的有()A.等弧所對的圓心角相等B.經過三點可以作一個圓C.平分弦的直徑垂直于這條弦D.圓的內接平行四邊形是矩形2、如圖,二次函敗y=ax2+bx+c(a、b、c為常數(shù),且a≠0)的圖象與x軸的交點的橫坐標分別為﹣1、3,則下列結論中正確的有()A.abc<0 B.2a+b=0 C.3a+2c>0 D.對于任意x均有ax2﹣a+bx﹣b≥03、下列命題正確的是(
)A.垂直于弦的直徑平分弦所對的兩條弧 B.弦的垂直平分線經過圓心C.平分弦的直徑垂直于弦 D.平分弦所對的兩條弧的直線垂直于弦4、下列說法正確的是(
)A.圓是軸對稱圖形,它有無數(shù)條對稱軸B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊C.弦長相等,則弦所對的弦心距也相等D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧5、如圖,在的網(wǎng)格中,點,,,,均在網(wǎng)格的格點上,下面結論正確的有(
)A.點是的外心 B.點是的外心C.點是的外心 D.點是的外心第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、已知二次函數(shù),當分別取時,函數(shù)值相等,則當取時,函數(shù)值為______.2、如圖,△ABC和△DEC關于點C成中心對稱,若AC=1,AB=2,∠BAC=90°,則AE的長是_________.3、如圖,在中,,,則圖中陰影部分的面積是_________.(結果保留)4、如圖,在平面直角坐標系中,等腰直角三角形OAB,∠A=90°,點O為坐標原點,點B在x軸上,點A的坐標是(1,1).若將△OAB繞點O順時針方向依次旋轉45°后得到△OA1B1,△OA2B2,△OA3B3,…,可得A1(,0),A2(1,﹣1),A3(0,﹣),…則A2021的坐標是______.5、如果二次函數(shù)的圖像在它的對稱軸右側部分是上升的,那么的取值范圍是__________.四、解答題(6小題,每小題10分,共計60分)1、如圖,在平面直角坐標系中,△ABC的BC邊與x軸重合,頂點A在y軸的正半軸上,線段OB,OC()的長是關于x的方程的兩個根,且滿足CO=2AO.(1)求直線AC的解析式;(2)若P為直線AC上一個動點,過點P作PD⊥x軸,垂足為D,PD與直線AB交于點Q,設△CPQ的面積為S(),點P的橫坐標為a,求S與a的函數(shù)關系式;(3)點M的坐標為,當△MAB為直角三角形時,直接寫出m的值.2、用指定方法解下列方程:(1)2x2-5x+1=0(公式法);(2)x2-8x+1=0(配方法).3、解關于y的方程:by2﹣1=y(tǒng)2+2.4、在平面直角坐標系中,設二次函數(shù)(m是實數(shù)).(1)當時,若點在該函數(shù)圖象上,求n的值.(2)小明說二次函數(shù)圖象的頂點在直線上,你認為他的說法對嗎?為什么?(3)已知點,都在該二次函數(shù)圖象上,求證:.5、已知關于x的一元二次方程x2+x?m=0.(1)設方程的兩根分別是x1,x2,若滿足x1+x2=x1?x2,求m的值.(2)二次函數(shù)y=x2+x?m的部分圖象如圖所示,求m的值.6、已知P為⊙O上一點,過點P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有點A、B(不與P、Q重合),連接AP、BP,若∠APQ=∠BPQ(1)如圖1,當∠APQ=45°,AP=1,BP=2時,求⊙O的半徑。(2)如圖2,連接AB,交PQ于點M,點N在線段PM上(不與P、M重合),連接ON、OP,設∠NOP=α,∠OPN=β,若AB平行于ON,探究α與β的數(shù)量關系。-參考答案-一、單選題1、D【解析】【分析】逐一分析四個選項中方程的根的判別式的符號,由此即可得出結論.【詳解】A.此方程判別式,方程有兩個相等的實數(shù)根,不符合題意;B.此方程判別式方程沒有實數(shù)根,不符合題意;C.此方程判別式,方程沒有實數(shù)根,不符合題意;D.此方程判別式,方程有兩個不相等的實數(shù)根,符合題意;故答案為:D.【考點】此題考查了一元二次方程根的判別式,根的判別式的值大于0,方程有兩個不相等的實數(shù)根;根的判別式的值等于0,方程有兩個相等的實數(shù)根;根的判別式的值小于0,方程沒有實數(shù)根.2、B【解析】【分析】根據(jù)一元二次方程的概念(只含一個未知數(shù),并且含有未知數(shù)的項的次數(shù)最高為2次的整式方程是一元二次方程)逐一進行判斷即可得.【詳解】解:A、,當時,不是一元二次方程,故不符合題意;B、,是一元二次方程,符合題意;C、,不是整式方程,故不符合題意;D、,整理得:,不是一元二次方程,故不符合題意;故選:B.【考點】本題考查了一元二次方程的定義,熟練掌握其定義是解題的關鍵.3、C【解析】【分析】根據(jù)圖形的對稱性,用360°除以3計算即可得解.【詳解】解:∵360°÷3=120°,∴旋轉的角度是120°的整數(shù)倍,∴旋轉的角度至少是120°.故選C.【考點】本題考查了旋轉對稱圖形,仔細觀察圖形求出旋轉角是120°的整數(shù)倍是解題的關鍵.4、C【解析】【分析】利用列表法或樹狀圖即可解決.【詳解】分別用r、b代表紅色帽子、黑色帽子,用R、B、W分別代表紅色圍巾、黑色圍巾、白色圍巾,列表如下:RBWrrRrBrWbbRbBbW則所有可能的結果數(shù)為6種,其中恰好為紅色帽子和紅色圍巾的結果數(shù)為1種,根據(jù)概率公式,恰好為紅色帽子和紅色圍巾的概率是.故選:C.【考點】本題考查了簡單事件的概率,常用列表法或畫樹狀圖來求解.5、B【解析】【分析】根據(jù)關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù)解答.【詳解】解:∵P(2,-n)與點Q(-m,-3)關于原點對稱,∴2=-(-m),-n=-(-3),∴m=2,n=-3,∴.故選:B.【考點】本題考查了關于原點對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律.二、多選題1、AD【解析】【分析】根據(jù)圓的有關概念及性質,對選項逐個判斷即可.【詳解】解:A.等弧是能夠完全重合的弧,因此等弧所對的圓心角相等,正確,符合題意;B.經過不在同一直線上的三點可以作一個圓,故原命題錯誤,不符合題意;C.平分弦(不是直徑)的直徑垂直于這條弦,故原命題錯誤,不符合題意;D.圓的內接平行四邊形是矩形,正確,符合題意,正確的有A、D,故答案為:A、D.【考點】此題考查了圓的有關概念及性質,解題的關鍵是熟練掌握圓的相關概念以及性質.2、BD【解析】【分析】由拋物線開口方向得到a>0,利用拋物線與x軸的交點問題和拋物線的對稱性得到拋物線的對稱軸為直線x=1,即-=1,所以b=-2a<0,利用拋物線與y軸的交點位置得到c<0,則可對A進行判斷;利用b=-2a可對B進行判斷;由于x=-1時,y=0,所以a-b+c=0,則c=-3a,3a+2c=-3a<0,于是可對C進行判斷;根據(jù)二次函數(shù)性質,x=1時,y的值最小,所以a+b+c≤ax2+bx+c,于是可對D進行判斷.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線與x軸的交點的坐標分別為(-1,0),(3,0),∴拋物線的對稱軸為直線x=1,即-=1,∴b=-2a<0,∵拋物線與y軸的交點在x軸下方,∴c<0,∴abc>0,所以A錯誤;∵b=-2a,∴2a+b=0,所以B正確;∵x=-1時,y=0,∴a-b+c=0,即a+2a+c=0,∴c=-3a,∴3a+2c=3a-6a=-3a<0,所以C錯誤;∵x=1時,y的值最小,∴對于任意x,a+b+c≤ax2+bx+c,即ax2-a+bx-b≥0,所以D正確.故選:BD.【考點】本題考查了二次函數(shù)與不等式(組):函數(shù)值y與某個數(shù)值m之間的不等關系,一般要轉化成關于x的不等式,解不等式求得自變量x的取值范圍;利用兩個函數(shù)圖象在直角坐標系中的上下位置關系求自變量的取值范圍,可作圖利用交點直觀求解,也可把兩個函數(shù)解析式列成不等式求解.3、ABD【解析】【分析】根據(jù)垂徑定理及其推論進行判斷即可.【詳解】A、垂直于弦的直徑平分弦所對的兩條弧,正確;B、弦的垂直平分線經過圓心,正確;C、平分弦(不是直徑)的直徑垂直于弦,故錯誤;D、平分弦所對的兩條弧的直線垂直于弦,正確;故選ABD.【考點】本題考查了垂徑定理:熟練掌握垂徑定理及其推論是解決問題的關鍵.4、ABD【解析】【分析】根據(jù)圓的相關知識和垂徑定理進行分析即可.【詳解】解:A.圓是軸對稱圖形,它有無數(shù)條對稱軸,正確;B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊,正確;C.弦長相等,則弦所對的弦心距也相等,不正確,只有在同圓或等圓中,弦長相等,則弦所對的弦心距也相等;D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧,正確.故選:ABD.【考點】本題考查了學生對圓的基本概念和垂徑定理的理解,屬于基礎題.5、ABCD【解析】【分析】連接HB、HD,利用勾股定理可得,則根據(jù)三角形外心的定義可對四個選項進行判斷.【詳解】解:如圖,連接HB、HD,根據(jù)勾股定理可得:,點是的外心,點是的外心,點是的外心,點是的外心,∴ABCD都是正確的.故選:ABCD.【考點】本題考查了三角形的外心和勾股定理的應用,熟練掌握三角形的外心到三角形的三個頂點的距離相等是解決本題的關鍵.三、填空題1、2020【解析】【分析】根據(jù)二次函數(shù)y=2x2+2020,當x分別取x1,x2(x1≠x2)時,函數(shù)值相等,可以得到x1和x2的關系,從而可以得到2x1+2x2的值,進而可以求得當x取2x1+2x2時,函數(shù)的值.【詳解】解:∵二次函數(shù)y=2x2+2020,當x分別取x1,x2(x1≠x2)時,函數(shù)值相等,∴2x12+2020=2x22+2020,∴x1=-x2,∴2x1+2x2=2(x1+x2)=0,∴當x=2x1+2x2時,y=2×0+2020=0+2020=2020,故答案為:2020.【考點】本題考查二次函數(shù)的性質、二次函數(shù)圖象上點的坐標特征,解答本題的關鍵是明確題意,利用二次函數(shù)的性質解答.2、2【解析】【分析】根據(jù)中心對稱的性質AD=DE及∠D=90゜,由勾股定理即可求得AE的長.【詳解】∵△DEC與△ABC關于點C成中心對稱,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE=,故答案為.【考點】本題考查了中心對稱的性質,勾股定理等知識,關鍵中心對稱性質的應用.3、【解析】【分析】由,根據(jù)圓周角定理得出,根據(jù)S陰影=S扇形AOB-可得出結論.【詳解】解:∵,∴,∴S陰影=S扇形AOB-,故答案為:.【考點】本題主要考查圓周角定理、扇形的面積計算,根據(jù)題意求得三角形與扇形的面積是解答此題的關鍵.4、【解析】【分析】根據(jù)題意得:A1(,0),A2(1,﹣1),A3(0,﹣),,…,由此發(fā)現(xiàn),旋轉8次一個循環(huán),再由,即可求解.【詳解】解:根據(jù)題意得:A1(,0),A2(1,﹣1),A3(0,﹣),,…,由此發(fā)現(xiàn),旋轉8次一個循環(huán),∵,∴A2021的坐標是.故答案為:【考點】本題主要考查了圖形的旋轉,明確題意,準確得到規(guī)律是解題的關鍵.5、【解析】【分析】由題意得:二次函數(shù)的圖像開口向上,進而,可得到答案.【詳解】∵二次函數(shù)的圖像在它的對稱軸右側部分是上升的,∴二次函數(shù)的圖像開口向上,∴.故答案是:【考點】本題主要考查二次函數(shù)圖象和二次函數(shù)的系數(shù)之間的關系,掌握二次函數(shù)的系數(shù)的幾何意義,是解題的關鍵.四、解答題1、(1);(2);(3)m的值為-3或-1或2或7;【解析】【分析】(1)根據(jù)一元二次方程的解求出OB和OC的長度,然后得到點B,點C坐標和OA的長度,進而得到點A坐標,最后使用待定系數(shù)法即可求出直線AC的解析式;(2)根據(jù)點A,點B坐標使用待定系數(shù)法求出直線AB的解析式,根據(jù)直線AB解析式和直線AC解析式求出點P,Q,D坐標,進而求出PQ和CD的長度,然后根據(jù)三角形面積公式求出S,最后對a的值進行分類討論即可;(3)根據(jù)△MAB的直角頂點進行分類討論,然后根據(jù)勾股定理求解即可.(1)解:解方程得,,∵線段OB,OC()的長是關于x的方程的兩個根,∴OB=1,OC=6,∴,,∵CO=2AO,∴OA=3,∴,設直線AC的解析式為,把點,代入得,解得,∴直線AC的解析式為;(2)解:設直線AB的解析式為y=px+q,把,代入直線AB解析式得,解得,∴直線AB的解析式為,∵PD⊥x軸,垂足為D,PD與直線AB交于點Q,點P的橫坐標為a,∴,,,∴,,∴,當點P與點A或點C重合時,即當a=0或時,此時S=0,不符合題意,當時,,當時,,當時,,∴;(3)解:∵,,,∴,,,當∠MAB=90°時,,∴,解得,當∠ABM=90°時,,∴,解得m=7,當∠AMB=90°時,,∴,解得,,∴m的值為-3或-1或2或7.【考點】本題考查解一元二次方程、待定系數(shù)法求一次函數(shù)解析式、三角形面積公式、勾股定理,正確應用分類討論思想是解題關鍵.2、(1)x1=,x2=(2)x1=4+,x2=4-【解析】【分析】(1)根據(jù)公式法,可得方程的解;(2)根據(jù)配方法,可得方程的解.(1)解:∵a=2,b=-5,c=1,∴Δ=b2﹣4ac=(-5)2-4×2×1=17,∴x=,∴x1=,x2=.(2)解:移項得,并配方,得,即(x-4)2=15,兩邊開平方,得x=4±,∴x1=4+,x2=4-.【考點】本題考查了解一元二次方程,配方法解一元二次方程的關鍵是配方,利用公式法解方程要利用根的判別式.3、當b>1時,原方程的解為y=±;當b≤1時,原方程無實數(shù)解.【解析】【分析】把b看做常數(shù)根據(jù)解方程的步驟:先移項,再合并同類項,系數(shù)化為1,即可得出答案.【詳解】解:移項得:by2﹣y2=2+1,合并同類項得:(b﹣1)y2=3,當b=1時,原方程無解;當b>1時,原方程的解為y=±;當b<1時,原方程無實數(shù)解.【考點】此題主要考查一元二次方程的求解,解題的關鍵是根據(jù)題意分類討論.4、(1)-7(2)對,理由見解析(3)見解析【解析】【分析】(1)把m=2,點A(8,n)代入解析式即可求解;(2)由拋物線解析式,得頂點是,把x=2m代入,求出y值與3-m比較,若相等則即可判斷小明說法正確,否則說法錯誤;(3)由點P(a+1,c),Q(4m-5+a,c)的縱坐標相同,即可求得對稱軸為直線x==a+2m-2,即可得出a+2m-2=2m,求得a=2,得到P(3,c),代入解析式即可得到==,根據(jù)二次函數(shù)的性質即可證得結論.(1)解:當m=2時,∵A(8,n)在函數(shù)圖象上,∴(2)解:由題意得,頂點是當x=2m時,∴頂點在直線上(3)證明:∵P(a+1,c),Q(4m-5+a,c)都在二次函數(shù)的圖象上∴對稱軸是直線∴a+2m-2=2m,∴a=2,∴P(3,c),把P(3,c)代入拋物線解析式,得∴==,∵-2<0,∴c有最大值為,∴c≤.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)圖象上點的坐標特征,二次函數(shù)的性質,熟練掌握二次函數(shù)的性質是解題的關鍵.5、(1)(2)【解析】【分析】(1)根據(jù)根與系數(shù)的關系求得x1+x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 應急值班制度流程
- 紡織公司客戶投訴應對制度
- 2026年多維度分析財務管理類證書題庫與實際應用趨勢測試
- 2026年軟件工程師認證題庫編程語言與算法全解
- 2026年國際貿易實務操作模擬題關稅與貿易政策應用分析
- 2026年英語教師資格認證考試題庫
- 2026年法律職業(yè)資格考試考點模擬試題
- 2026年金融分析師操作知識試題庫
- 2026年營銷策劃師水平考核市場調研與營銷策略題
- 2026年旅游目的地營銷經理高級筆試題
- GB/T 13320-2025鋼質模鍛件金相組織評級圖及評定方法
- 深海資源勘探中的分布式感知系統(tǒng)布設與效能評估
- 化工生產安全用電課件
- 2026屆湖北省武漢市高三元月調考英語試卷(含答案無聽力原文及音頻)
- CB-T-4459-2016船用七氟丙烷滅火裝置
- 鄰近鐵路營業(yè)線施工監(jiān)測技術規(guī)程編制說明
- 教育科學研究方法智慧樹知到期末考試答案章節(jié)答案2024年浙江師范大學
- 民辦高中辦學方案
- 樹脂鏡片制作課件
- 企業(yè)對賬函模板11
- GB/T 20452-2021仁用杏杏仁質量等級
評論
0/150
提交評論