重難點解析青島版8年級下冊數(shù)學期末測試卷附答案詳解【預熱題】_第1頁
重難點解析青島版8年級下冊數(shù)學期末測試卷附答案詳解【預熱題】_第2頁
重難點解析青島版8年級下冊數(shù)學期末測試卷附答案詳解【預熱題】_第3頁
重難點解析青島版8年級下冊數(shù)學期末測試卷附答案詳解【預熱題】_第4頁
重難點解析青島版8年級下冊數(shù)學期末測試卷附答案詳解【預熱題】_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

青島版8年級下冊數(shù)學期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、若關于的一元一次不等式組的解集恰好有3個負整數(shù)解,且關于的分式方程有非負整數(shù)解,則符合條件的所有整數(shù)的和為(

)A.6 B.9 C. D.22、如圖,△ABC中,∠ACB=90°,AC=4,BC=3,將△ADE沿DE翻折,使點A與點B重合,則AE的長為(

)A. B.3 C. D.3、如圖,在矩形紙片中,,,點是邊上的一點,將沿所在的直線折疊,使點落在上的點處,則的長是(

)A.2 B.3 C.4 D.54、下列函數(shù)中,y是x的正比例函數(shù)的是(

)A.y=x B.y=5x﹣1 C.y=x2 D.y=5、小明從家出發(fā)向正北方向走了150m,接著向正東方向走到離家直線距離為250m遠的地方,那么小明向正東方向走的路程是()A.250m B.200m C.150m D.100m6、與是同類二次根式的是(

)A. B. C. D.7、下列各式中,與是同類二次根式的是(

)A. B. C. D.258、下列各數(shù)為無理數(shù)的是(

)A. B. C. D.0第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、的算術(shù)平方根是______,的立方根是______.2、如圖是小明的身高隨年齡變化的圖像,那么小明自16歲到18歲這兩年間身高一共增高了約___________cm.3、在Rt△ABC中,D是斜邊AB的中點,AD=10,則CD的長是______.4、如圖,F(xiàn)為正方形ABCD的邊CD上一動點,AB=2,連接BF,過A作AH⊥BF交BC于H,交BF于G,連接CG,當CG為最小值時,CH的長為_____.5、已知一次函數(shù)的圖象不經(jīng)過第三象限,若點和均在函數(shù)圖象上,那么與的大小關系為______.6、D為等腰Rt△ABC斜邊BC上一點(不與B、C重合),DE⊥BC于點D,交直線BA于點E,DF交AC于F,連接EF,BD=nDC,當n=_____時,△DEF為等腰直角三角形.7、如圖,在邊長為4的正方形ABCD中,將△ABD沿射線BD平移,連接EC、GC.求EC+GC的最小值為_____.三、解答題(7小題,每小題10分,共計70分)1、如圖所示,一橋洞的上邊是半圓,下邊是長方形.已知半圓的直徑為2m,長方形的另一邊是1m,有一輛廂式小貨車,高1.5米,寬1.6米,這輛小貨車能否通過此橋洞?通過計算說明理由.2、如圖,四邊形ABCD是矩形紙片,,,在上取一點,將紙片沿AE翻折,使點D落在BC邊上的點F處.(1)AF的長=______;(2)BF的長=______;(3)CF的長=______;(4)求DE的長.3、如圖,已知Rt△ABC中,∠B=90°,∠A=30°,請用尺規(guī)作圖法,在AC邊上求作一點D,使BD=AC.(保留作圖痕跡,不寫作法)4、5、【閱讀材料】數(shù)列是一個古老的數(shù)學課題,我國對數(shù)列概念的認識很早,例如《易傳?系辭》:“河出圖,洛出書,圣人則之;兩儀生四象,四象生八卦”.這是世界數(shù)學史上有關等比數(shù)列的最早文字記載.【問題提出】求等比數(shù)列1+a1+a2+a3+…+an的值(a>0,且a≠1,n是正整數(shù),請寫出計算過程).【等比數(shù)列】按照一定順序排列著的一列數(shù)稱為數(shù)列,數(shù)列中的每一個數(shù)叫做這個數(shù)列的項.排在第一位的數(shù)稱為第一項,記為a1,排在第二位的數(shù)稱為第二項,記為a2,依此類推,排在第n位的數(shù)稱為第n項,記為an.所以,數(shù)列的一般形式可以寫成:a1,a2,a3,…,an,….一般地,如果一個數(shù)列從第二項起,每一項與它前一項的比值等于同一個常數(shù),那么這個數(shù)列叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比,公比通常用q表示.如:數(shù)列1,2,4,8,…為等比數(shù)列,其中a1=1,a2=2,公比為q=2.根據(jù)以上材料,解答下列問題:(1)等比數(shù)列3,9,27,…的公比q為_____,第5項是_____.【公式推導】如果一個數(shù)列a1,a2,a3,…,an…,是等比數(shù)列,且公比為q,那么根據(jù)定義可得到:=q,=q,=q,…,=q.所以a2=a1?q,a3=a2?q=a1q?q=a1?q2,a4=a3?q=a1?q2=a1?q3,…(2)由此,請你填空完成等比數(shù)列的通項公式:an=a1?(_____).【拓廣探究】等比數(shù)列求和公式并不復雜,但是其推導過程——錯位相減法,構(gòu)思精巧、形式奇特.歐幾里得在《幾何原本》中就給出了等比數(shù)列前n項和公式,而錯位相減法則直到1822年才由歐拉在《代數(shù)學基礎》中給出,時間相差兩千多年.下面是小明為了計算1+2+22+…+22019+22020的值,采用的方法:設S=1+2+22+…+22019+22020①,則2S=2+22+…+22020+22021②,②-①得2S-S=S=22021-1,∴S=1+2+22+…+22019+22020=22021-1.【解決問題】(3)請仿照小明的方法求等比數(shù)列1+a1+a2+a3+…+an的值(a>0,且a≠1,n是正整數(shù),請寫出計算過程).【拓展應用】(4)計算25+252+253+…+25n的值為_____.(直接寫出結(jié)果)6、如圖,P為正方形ABCD的邊BC上的一動點(P不與B、C重合),連接AP,過點B作BQ⊥AP交CD于點Q,將沿著BQ所在直線翻折得到,延長QE交BA的延長線于點M.(1)探求AP與BQ的數(shù)量關系;(2)若,,求QM的長.7、如圖是直角三角尺()和等腰直角三角尺()放置在同一平面內(nèi),斜邊BC重合在一起,,,.交AB于點E;作交AC的延長線于點F.(1)求證:四邊形AEDF是正方形.(2)當時,求正方形AEDF的邊長.-參考答案-一、單選題1、A【解析】【分析】解一元一次不等式組求得解集,根據(jù)題意可求得a的取值范圍,解分式方程得方程的解,根據(jù)分式方程的解為非負整數(shù)即可確定所有的a值,從而可求得其和.【詳解】解不等式①得:;解不等式②得:由題意知不等式組的解集為:∵恰好有三個負整數(shù)解∴解得:解分式方程得:∵分式方程有非負整數(shù)解∴a+1是4的非負整數(shù)倍∵∴∴a+1=0或4或8即或3或7,即綜上:或7,則故選:A【點睛】本題考查了解一元一次不等式組、解分式方程等知識,是方程與不等式的綜合,根據(jù)不等式組有3個非負整數(shù)解,從而得出關于a的不等式是本題的難點與關鍵.2、D【解析】【分析】先利用折疊的性質(zhì)得到,設,則,,在中,根據(jù)勾股定理可得到,求解即可.【詳解】解:∵沿DE翻折,使點A與點B重合,∴,∴,設,則,,在中,∵,∴,解得,∴,故選:D.【點睛】本題考查了折疊的性質(zhì)及勾股定理的應用,理解題意,熟練掌握勾股定理解三角形是解題關鍵.3、B【解析】【分析】根據(jù)折疊的性質(zhì)可得,再由矩形的性質(zhì)可得,從而得到,然后設,則,在中,由勾股定理,即可求解.【詳解】解:根據(jù)題意得:,在矩形紙片中,,∴,∴,設,則,在中,,∴,解得:,即.故選:B【點睛】本題主要考查了矩形與折疊,勾股定理,熟練掌握矩形的性質(zhì),折疊圖形的性質(zhì)是解題的關鍵.4、A【解析】【分析】根據(jù)正比例函數(shù)的定義判斷即可.【詳解】解:A.y=x,是正比例函數(shù),故選項符合題意;B.y=5x﹣1,是一次函數(shù),故選項不符合題意;C.y=x2,是二次函數(shù),故選項不符合題意;D.y=,是反比例函數(shù),故選項不符合題意;故選:A.【點睛】本題考查了正比例函數(shù)的定義,熟練掌握正比例函數(shù)的定義是解題的關鍵.形如的函數(shù)是正比例函數(shù).5、B【解析】【分析】根據(jù)題意畫出圖形,進而利用勾股定理得出答案.【詳解】解:如圖所示:由題意可得:,由勾股定理得,故選B【點睛】此題考查了勾股定理的應用,解題的關鍵是理解題意,正確畫出圖形.6、D【解析】【分析】將各選項化簡,被開方數(shù)是2的二次根式是的同類二次根式,從而得出答案.【詳解】解:A選項,,故該選項不符合題意;B選項,是最簡二次根式,被開方數(shù)不是2,故該選項不符合題意;C選項,=2,故該選項不符合題意;D選項,,故該選項符合題意;故選:D.【點睛】本題考查了同類二次根式,二次根式的性質(zhì)與化簡,掌握一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個二次根式叫做同類二次根式是解題的關鍵.7、B【解析】【分析】先把各選項化成最簡二次根式,然后根據(jù)同類二次根式判斷即可.【詳解】∵,,∴與是同類二次根式的是.故選:B.【點睛】本題考查了最簡二次根式和同類二次根式的定義,把各個選項化簡是解題的關鍵.8、C【解析】【分析】無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分數(shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項.【詳解】A.﹣4是整數(shù),屬于有理數(shù),故本選項不合題意;B.是分數(shù),屬于有理數(shù),故本選項不符合題意;C.是無理數(shù),故選項合題意;D.0是整數(shù),屬于有理數(shù),故選項不符合題意;故答案選:C【點睛】此題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學習的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…(每兩個1之間的0依次增加1個),等有這樣規(guī)律的數(shù).二、填空題1、

2

2【解析】【分析】根據(jù)算術(shù)平方根、立方根的意義,即可解答.【詳解】解:∵,,∴的算術(shù)平方根是2;∵,,∴的立方根是2.故答案為:2,2.【點睛】本題考查了平方根與立方根,正確理解平方根與立方根的意義是解題的關鍵.2、【解析】【分析】先求解時對應的一次函數(shù)的解析式,可得時的函數(shù)值,再求解時對應的函數(shù)解析式,可得時的函數(shù)值,從而可得答案.【詳解】解:當時,設函數(shù)解析式為:解得:所以一次函數(shù)為:當時,當時,設函數(shù)解析式為:所以一次函數(shù)的解析式為:當時,(cm),故答案為:15【點睛】本題考查的是利用待定系數(shù)法求解一次函數(shù)的解析式,已知自變量的值求解函數(shù)值,掌握“待定系數(shù)法求解解析式的步驟”是解本題的關鍵.3、10【解析】【分析】根據(jù)斜邊中線等于斜邊一半,直接求解即可.【詳解】解:∵∠ACB=90°,D為斜邊AB的中點,∴AD=BD=10,∴CD=AD=10.故答案為:10.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),熟記性質(zhì)是解題的關鍵.4、##【解析】【分析】取AB的中點O,連接OG,OC,根據(jù)的長為定值,當O,G,C共線時,CG的值最小,證明CF=CG=BH即可解決問題.【詳解】解:如圖,取AB的中點O,連接OG,OC.四邊形ABCD是正方形,ABC=90°,AB=2,OB=OA=1,,AH⊥BF,AGB=90°,AO=OB,OG=AB=1,,當O、G、C共線時,CG的值最小,最小值=,此時如圖,OB=OG=1,OBG=OGB,ABCD,OBG=CFG,OGB=CGF,CGF=CFG,CF=CG=,ABH=BCF=AGB=90°,∠BAH+∠ABG=90°,∠ABG+∠CBF=90°,∠BAH=∠CBF,AB=BC,△ABH△BCF(ASA),BH=CF=,CH=BC-BH=2-()=3-,故答案為:【點睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形斜邊中線的性質(zhì),等腰三角形的判定和性質(zhì)等知識,解題的關鍵是學會添加常用輔助線.5、y1<y2【解析】【分析】根據(jù)一次函數(shù)的圖象與系數(shù)的關系判斷k<0,再利用一次函數(shù)的性質(zhì)可得出y隨x的增大而減小,結(jié)合2>,即可得出結(jié)論.【詳解】解:∵一次函數(shù)的圖象不經(jīng)過第三象限,∴一次函數(shù)的圖象經(jīng)過第一、二、四象限,∴k<0,∴y隨x的增大而減小,∵點和均在函數(shù)圖象上,2>,∴y1<y2.故答案為:y1<y2.【點睛】本題考查了一次函數(shù)的圖象與系數(shù)的關系,一次函數(shù)的性質(zhì),根據(jù)一次函數(shù)的圖象與系數(shù)的關系判斷出k<0是解題的關鍵.6、或1【解析】【分析】分兩種情況:情況①:當∠DEF=90°時,由題意得出EF∥BC,作FG⊥BC于G,證出△CFG、△BDE是等腰直角三角形,四邊形EFGD是正方形,得出BD=DE=EF=DG=FG=CG,即可得出結(jié)果;情況②:當∠EFD=90°時,求出∠DEF=45°,得出E與A重合,D是BC的中點,BD=CD,即可得出結(jié)果.【詳解】解:分兩種情況:情況①:當∠DEF=90°時,如圖1所示:∵DE⊥BC,∴∠BDE=90°=∠DEF,∴EF∥BC,作FG⊥BC于G,∴∠EDB=∠FGB=90°,∴ED∥FG,∴四邊形EDGF為矩形,∵△ABC是等腰直角三角形,∴△CFG、△BDE是等腰直角三角形,∴BD=DE,當△DEF為等腰直角三角形時,DE=EF,此時四邊形EFGD是正方形,∴BD=DE=EF=DG=FG=CG,∴BD=DC,∴n=;情況②:當∠EFD=90°時,如圖2所示:∵∠EDF=45°,∴∠DEF=45°,此時E與A重合,D是BC的中點,∴BD=CD,∴n=1.故答案為:或1.【點睛】本題考查了等腰直角三角形的判定與性質(zhì)、平行線的判定、正方形的判定與性質(zhì);熟練掌握等腰直角三角形的性質(zhì),分兩種情況討論是解決問題的關鍵.7、【解析】【分析】如圖,連接AC與BD交于點O,過點C作,點E關于對稱的對稱點為M,連接CM,GM,EM,EM與的交點為N,與BD交點為P,則,,,,求出的值,當三點不共線時,有;當三點共線時,有;有,可知三點共線時,值最小,在中,由勾股定理得,根據(jù)可得的最小值.【詳解】解:如圖,連接AC與BD交于點O,過點C作,點E關于對稱的對稱點為M,連接CM,GM,EM,EM與的交點為N,與BD交點為P

則,,,∵∴兩平行線的距離∵∴∴∴∴∴當三點不共線時,有當三點共線時,有∴∴三點共線時,值最小在中,由勾股定理得∴的最小值為故答案為:.【點睛】本題考查了正方形的性質(zhì),垂直平分線的性質(zhì),三角形的三邊關系,勾股定理,正弦值等知識.解題的關鍵在于對知識的靈活運用.三、解答題1、能,理由見解析【解析】【分析】設半圓的圓心為O,于是得到OA=×1.6=0.8(米).過點A作直徑的垂線,交半圓于點B,交長方形另一邊于點C,根據(jù)勾股定理即可得到答案.【詳解】解:設半圓的圓心為O,(米).過點A作直徑的垂線,交半圓于點B,交長方形另一邊于點C.在中,由勾股定理可得:,即.所以米.所以(米).由于1.6米>1.5米,所以小貨車能通過此橋洞.【點睛】本題考查了勾股定理的應用:建立數(shù)學模型,善于觀察題目的信息是解題的關鍵.2、(1)10(2)6(3)4(4)5【解析】【分析】(1)根據(jù)折疊的性質(zhì)即可得;(2)先根據(jù)矩形的性質(zhì)可得,再根據(jù)折疊的性質(zhì)可得,然后在中,利用勾股定理即可得;(3)根據(jù)即可得;(4)先根據(jù)折疊的性質(zhì)可得,設,則,再在中,利用勾股定理即可得.(1)解:由折疊的性質(zhì)得:,故答案為:10.(2)解:四邊形是矩形,,,,由折疊的性質(zhì)得:,,故答案為:6.(3)解:,,故答案為:4.(4)解:由折疊的性質(zhì)得:,四邊形是矩形,,設,則,在中,,即,解得,即的長為5.【點睛】本題考查了矩形與折疊問題、勾股定理等知識點,熟練掌握矩形與折疊的性質(zhì)是解題關鍵.3、見解析【解析】【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半知D為AC的中點,故只需作AC的垂直平分線即可.【詳解】解:如圖,點D即為所求作.【點睛】本題考查尺規(guī)作圖-作線段垂直平分線,涉及直角三角形斜邊上的中線性質(zhì),熟練掌握線段垂直平分線的作圖方法以及直角三角形斜邊上的中線性質(zhì)是解答的關鍵.4、(1)y=-2x+5(2)(0,2)(3)略5、(1)3,243;(2)qn-1;【解決問題】;【拓展應用】【解析】【分析】(1)根據(jù)等比數(shù)列的公比的定義求解即可;(2)探究規(guī)律利用規(guī)律解決問題;【解決問題】設S=1+a1+a2+a3+…+an,則aS=a1+a2+a3+…+an+1,兩式相減即可求得;【拓展應用】設S=25+252+253+…+25n,則25S=252+253+…+25n+1,兩式相減即可求得.【詳解】解:(1)等比數(shù)列3,9,27,…的公比q為3,第四項為27×3=81,第五項為81×3=243,故答案為:3,243.(2)如果一個數(shù)列a1,a2,a3,…,an…,是等比數(shù)列,且公比為q,那么根據(jù)定義可得到:=q,=q,=q,…,=q.所以a2=a1?q,a3=a2?q=a1q?q=a1?q2,a4=a3?q=a1?q2=a1?q3,…an=a1.qn-1.故答案為:qn-1.(3)設S=1+a1+a2+a3+…+an①,則aS=a1+a2+a3+…+an+1②,②-①得aS-S=(a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論