版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、等邊三角形、等腰三角形、矩形、菱形中既是軸對稱圖形,又是中心對稱圖形的個數(shù)是()A.2個 B.3個 C.4個 D.5個2、小張同學(xué)去展覽館看展覽,該展覽館有A、B兩個驗票口(可進(jìn)可出),另外還有C、D兩個出口(只出不進(jìn)).則小張從不同的出入口進(jìn)出的概率是()A. B. C. D.3、下列事件中,是必然事件的是()A.剛到車站,恰好有車進(jìn)站B.在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球C.打開九年級上冊數(shù)學(xué)教材,恰好是概率初步的內(nèi)容D.任意畫一個三角形,其外角和是360°4、“2022年春節(jié)期間,中山市會下雨”這一事件為()A.必然事件 B.不可能事件 C.確定事件 D.隨機事件5、在圓內(nèi)接四邊形ABCD中,∠A、∠B、∠C的度數(shù)之比為2:4:7,則∠B的度數(shù)為()A.140° B.100° C.80° D.40°6、下列圖形中,既是中心對稱圖形又是抽對稱圖形的是()A. B. C. D.7、如圖,點A、B、C在上,,則的度數(shù)是()A.100° B.50° C.40° D.25°8、若的圓心角所對的弧長是,則此弧所在圓的半徑為()A.1 B.2 C.3 D.4第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、已知60°的圓心角所對的弧長是3.14厘米,則它所在圓的周長是______厘米.2、如圖,把分成相等的六段弧,依次連接各分點得到正六邊形ABCDEF,如果的周長為,那么該正六邊形的邊長是______.3、如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠D=110°,則的長為__.4、皮影戲是一種以獸皮或紙板做成的人物剪影,在燈光照射下用隔亮布進(jìn)行表演的民間戲?。硌菡咴谀缓蟛倏v剪影、演唱,或配以音樂,具有濃厚的鄉(xiāng)土氣息.“皮影戲”中的皮影是______(填寫“平行投影”或“中心投影”)5、點P為邊長為2的正方形ABCD內(nèi)一點,是等邊三角形,點M為BC中點,N是線段BP上一動點,將線段MN繞點M順時針旋轉(zhuǎn)60°得到線段MQ,連接AQ、PQ,則的最小值為______.6、如圖,、分別與相切于A、B兩點,若,則的度數(shù)為________.7、在平面直角坐標(biāo)系中,點,圓C與x軸相切于點A,過A作一條直線與圓交于A,B兩點,AB中點為M,則OM的最大值為______.三、解答題(7小題,每小題0分,共計0分)1、電影《長津湖》以抗美援朝戰(zhàn)爭第二次戰(zhàn)役中的長津湖戰(zhàn)役為背景,講述71年前,中國人民志愿軍赴朝作戰(zhàn),在極寒嚴(yán)酷環(huán)境下,東線作戰(zhàn)部隊?wèi){著鋼鐵意志和英勇無畏的戰(zhàn)斗精神一路追擊,奮勇殺敵的真實歷史.為紀(jì)念歷史,緬懷先烈,我校團(tuán)委將電影中的四位歷史英雄人物頭像制成編號為A、B、C、D的四張卡片(除編號和頭像外其余完全相同),活動時學(xué)生根據(jù)所抽取的卡片來講述他們在影片中波瀾壯闊、可歌可泣的歷史事跡.規(guī)則如下:先將四張卡片背面朝上,洗勻放好,小強從中隨機抽取一張,然后放回并洗勻,小葉再從中隨機抽取一張.請用列表或畫樹狀圖的方法求小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率.2、如圖,AB是的直徑,CD是的一條弦,且于點E.(1)求證:;(2)若,,求的半徑.3、如圖,已知線段,點A在線段上,且,點B為線段上的一個動點.以A為中心順時針旋轉(zhuǎn)點M,以B為中心逆時針旋轉(zhuǎn)點N,旋轉(zhuǎn)角分別為和.若旋轉(zhuǎn)后M、N兩點重合成一點C(即構(gòu)成),設(shè).(1)的周長為_______;(2)若,求x的值.4、如圖,已知AB是⊙O的直徑,,連接OC,弦,直線CD交BA的延長線于點.(1)求證:直線CD是⊙O的切線;(2)若,,求OC的長.5、如圖,在中,,,將繞著點A順時針旋轉(zhuǎn)得到,連接BD,連接CE并延長交BD于點F.(1)求的度數(shù);(2)若,且,求DF的長.6、如圖,拋物線y=-+x+2與x軸負(fù)半軸交于點A,與y軸交于點B.(1)求A,B兩點的坐標(biāo);(2)如圖1,點C在y軸右側(cè)的拋物線上,且AC=BC,求點C的坐標(biāo);(3)如圖2,將△ABO繞平面內(nèi)點P順時針旋轉(zhuǎn)90°后,得到△DEF(點A,B,O的對應(yīng)點分別是點D,E,F(xiàn)),D,E兩點剛好在拋物線上.①求點F的坐標(biāo);②直接寫出點P的坐標(biāo).7、某商家銷售一批盲盒,每一個看上去無差別的盲盒內(nèi)含有A,B,C,D四種玩具中的一種,抽到玩具B的有關(guān)統(tǒng)計量如表所示:抽盲盒總數(shù)50010001500200025003000頻數(shù)130273414566695843頻率0.2600.2730.2760.2830.2780.281(1)估計從這批盲盒中任意抽取一個是玩具B的概率是;(結(jié)果保留小數(shù)點后兩位)(2)小明從分別裝有A,B,C,D四種玩具的四個盲盒中隨機抽取兩個,請利用畫樹狀圖或列表的方法,求抽到的兩個玩具恰為玩具A和玩具C的概率.-參考答案-一、單選題1、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進(jìn)行判斷.【詳解】解:矩形,菱形既是軸對稱圖形,也是中心對稱圖形,符合題意;等邊三角形、等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;共2個既是軸對稱圖形又是中心對稱圖形.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.(1)如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.(2)如果一個圖形繞某一點旋轉(zhuǎn)180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.2、D【分析】先畫樹狀圖得到所有的等可能性的結(jié)果數(shù),然后找到小張從不同的出入口進(jìn)出的結(jié)果數(shù),最后根據(jù)概率公式求解即可.【詳解】解:列樹狀圖如下所示:由樹狀圖可知一共有8種等可能性的結(jié)果數(shù),其中小張從不同的出入口進(jìn)出的結(jié)果數(shù)有6種,∴P小張從不同的出入口進(jìn)出的結(jié)果數(shù),故選D.【點睛】本題主要考查了用列表法或樹狀圖法求解概率,解題的關(guān)鍵在于能夠熟練掌握用列表法或樹狀圖法求解概率.3、D【分析】根據(jù)必然事件的概念“在一定條件下,有些事件必然會發(fā)生,這樣的事件稱為必然事件”可判斷選項D是必然事件;根據(jù)不可能事件的概念“有些事件必然不會發(fā)生,這樣的事件稱為不可能事件”可判斷選項B是不可能事件;根據(jù)隨機事件的概念“在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機事件”判斷選項A、C是隨機事件,即可得.【詳解】解:A、剛到車站,恰好有車進(jìn)站是隨機事件;B、在一個僅裝著白乒乓球的盒子中,摸出黃乒乓球是不可能事件;C、打開九年級上冊數(shù)學(xué)教材,恰好是概率初步的內(nèi)容是隨機事件;D、任意畫一個三角形,其外角和是360°是必然事件;故選D.【點睛】本題考查了必然事件,解題的關(guān)鍵是熟記必然事件的概念,不可能事件的概念和隨機事件的概念.4、D【分析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】解:“2022年年春節(jié)期間,中山市會下雨”這一事件為隨機事件,故選:D.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、C【分析】,,,進(jìn)而求解的值.【詳解】解:由題意知∵∴∴∵∴故選C.【點睛】本題考查了圓內(nèi)接四邊形中對角互補.解題的關(guān)鍵在于根據(jù)角度之間的數(shù)量關(guān)系求解.6、B【詳解】解:.是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;.既是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;.是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;.不是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;故選:B.【點睛】本題主要考查了中心對稱圖形和軸對稱圖形的概念,解題的關(guān)鍵是判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;判斷中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.7、C【分析】先根據(jù)圓周角定理求出∠AOB的度數(shù),再由等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB=∠OBA=40°,故選:C.【點睛】本題考查的是圓周角定理,即在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.8、C【分析】先設(shè)半徑為r,再根據(jù)弧長公式建立方程,解出r即可【詳解】設(shè)半徑為r,則周長為2πr,120°所對應(yīng)的弧長為解得r=3故選C【點睛】本題考查弧長計算,牢記弧長公式是本題關(guān)鍵.二、填空題1、18.84【分析】先根據(jù)弧長公式求得πr,然后再運用圓的周長公式解答即可.【詳解】解:設(shè)圓弧所在圓的半徑為厘米,則,解得,則它所在圓的周長為(厘米),故答案為:.【點睛】本題主要考查了弧長公式、圓的周長公式等知識點,牢記弧長公式是解答本題的關(guān)鍵.2、6【分析】如圖,連接OA、OB、OC、OD、OE、OF,證明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等邊三角形,再求出圓的半徑即可.【詳解】解:如圖,連接OA、OB、OC、OD、OE、OF.∵正六邊形ABCDEF,∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等邊三角形,∵的周長為,∴的半徑為,正六邊形的邊長是6;【點睛】本題考查正多邊形與圓的關(guān)系、等邊三角形的判定和性質(zhì)等知識,明確正六邊形的邊長和半徑相等是解題的關(guān)鍵.3、##【分析】連接OA、OC,先求出∠ABC的度數(shù),然后得到∠AOC,再由弧長公式即可求出答案.【詳解】解:連接OA、OC,如圖,∵四邊形ABCD是⊙O的內(nèi)接四邊形,∠D=110°,∴,∴,∴;故答案為:.【點睛】本題考查了弧長的計算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長公式.4、中心投影【分析】根據(jù)平行投影和中心投影的定義解答即可.【詳解】解:“皮影戲”中的皮影是中心投影.故答案是中心投影.【點睛】本題主要考查了平行投影和中心投影,中心投影是指把光由一點向外散射形成的投影,平行投影是在一束平行光線照射下形成的投影.5、【分析】如圖,取的中點,連接,,,證明,進(jìn)而證明在上運動,且垂直平分,根據(jù),求得最值,根據(jù)正方形的性質(zhì)和勾股定理求得的長即可求得的最小值.【詳解】解:如圖,取的中點,連接,,,將線段MN繞點M順時針旋轉(zhuǎn)60°得到線段MQ,,是等邊三角形,,是的中點,是的中點是等邊三角形,即在和中,又是的中點點在上是的中點,是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點睛】本題考查了正方形的性質(zhì)等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,垂直平分線的性質(zhì)與判定,根據(jù)以上知識轉(zhuǎn)化線段是解題的關(guān)鍵.6、【分析】根據(jù)已知條件可得出,,再利用圓周角定理得出即可.【詳解】解:、分別與相切于、兩點,,,,,.故答案為:.【點睛】本題考查的知識點是切線的性質(zhì)以及圓周角定理,掌握以上知識點是解此題的關(guān)鍵.7、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點,先求出A點坐標(biāo),從而可證OM是△ABD的中位線,得到,則當(dāng)BD最小時,OM也最小,即當(dāng)B運動到時,BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點∵點C的坐標(biāo)為(2,2),圓C與x軸相切于點A,∴點A的坐標(biāo)為(2,0),∴OA=OD=2,即O是AD的中點,又∵M(jìn)是AB的中點,∴OM是△ABD的中位線,∴,∴當(dāng)BD最小時,OM也最小,∴當(dāng)B運動到時,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點睛】本題主要考查了坐標(biāo)與圖形,一點到圓上一點的距離得到最小值,兩點距離公式,三角形中位線定理,把求出OM的最小值轉(zhuǎn)換成求BD的最小值是解題的關(guān)鍵.三、解答題1、【分析】根據(jù)題意列出樹狀圖,根據(jù)概率公式即可求解.【詳解】由題意做樹狀圖如下:故小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率為.【點睛】此題考查了用列表法或樹狀圖法求概率,解題時要注意此題是放回試驗還是不放回試驗,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、(1)見解析;(2)3【分析】(1)根據(jù)∠D=∠B,∠BCO=∠B,代換證明;(2)根據(jù)垂徑定理,得CE=,,利用勾股定理計算即可.【詳解】(1)證明:∵OC=OB,∴∠BCO=∠B;∵,∴∠B=∠D;∴∠BCO=∠D;(2)解:∵AB是⊙O的直徑,且CD⊥AB于點E,∴CE=CD,∵CD=,∴CE=,在Rt△OCE中,,∵OE=1,∴,∴;∴⊙O的半徑為3.【點睛】本題考查了圓周角定理,垂徑定理,勾股定理,結(jié)合圖形,熟練運用三個定理是解題的關(guān)鍵.3、(1)4(2)【分析】(1)由旋轉(zhuǎn)知:AM=AC=1,BN=BC,將△ABC的周長轉(zhuǎn)化為MN;(2)由α+β=270°,得∠ACB=90°,利用勾股定理列方程即可.(1)解:由旋轉(zhuǎn)知:AM=AC=1,BN=BC=3-x,∴△ABC的周長為:AC+AB+BC=MN=4;故答案為:4;(2)解:∵α+β=270°,∴∠CAB+∠CBA=360°-270°=90°,∴∠ACB=180°-(∠CAB+∠CBA)=180°-90°=90°,∴AC2+BC2=AB2,即12+(3-x)2=x2,解得.【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì),勾股定理等知識,證明∠ACB=90°是解題的關(guān)鍵.4、(1)見解析;(2)【分析】(1)連接OD,由AD∥OC及OD=OA,即可得到∠COB=∠DOC,從而可證得△OBC≌△ODC,即可證得CD是⊙O的切線;(2)由AD∥OC可得△EAD∽△EOC,可得,再由△OBC≌△ODC得BC=CD,從而可得,則可求得OC的長.【詳解】(1)連接OD,∵,∴.又∵,∴,∴.在與中,∴,∴.又∵,∴,∴是的切線.(2)∵,∴,∴,∴.又∵,∴,∴,∴,∴,∴,∴OC=15【點睛】本題是圓的綜合,它考查了切線的判定,三角形全等的判定與性質(zhì),相似三角形的判定與性質(zhì)等知識;證明圓的切線時,往往作半徑.5、(1)45°;(2)【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得,,,,通過等量代換及三角形內(nèi)角和得,根據(jù)四點共圓即可求得;(2)連接EB,先證明出,根據(jù)全等三角形的性質(zhì)得,在中利用勾股定理,即可求得.【詳解】解:(1)由旋轉(zhuǎn)可知:,,,,∴,,.由三角形內(nèi)角和定理得,∴點A,D,F(xiàn),E共圓.∴.(2)連接EB,∵,∴.∵,∴.又∵,,∴.∴,.∴.在中,,,,∵,∴.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、三角形全等判定及性質(zhì)、勾股定理、三角形內(nèi)角和等,解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì).6、(1)A(-1,0),B(0,2);(2)點C的坐標(biāo)(,);(3)①求點F的坐標(biāo)(1,2);②點P的坐標(biāo)(,)【分析】(1)令x=0,求得y值,得點B的坐標(biāo);令y=0,求得x的值,取較小的一個即求A點的坐標(biāo);(2)設(shè)C的坐標(biāo)為(x,-+x+2),根據(jù)AC=BC,得到,令t=-+x,解方程即可;(3)①根據(jù)題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,根據(jù)B,E都在拋物線上,則B,E是對稱點,從而確定點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,點E(3,2),確定BE=3,根據(jù)旋轉(zhuǎn)性質(zhì),得EF=BO=2,從而確定點F的坐標(biāo);②根據(jù)BE=3,∠BPE=90°,PB=PE,確定P到BE的距離,即可寫出點P的坐標(biāo).【詳解】(1)令x=0,得y=2,∴點B的坐標(biāo)為B(0,2);令y=0,得-+x+2=0,解得∵點A在x軸的負(fù)半軸;∴A點的坐標(biāo)(-1,0);(2)設(shè)C的坐標(biāo)為(x,-+x+2),∵AC=BC,A(-1,0),B(0,2),∴,∵A(-1,0),B(0,2),∴,即,設(shè)t=-+x,∴,∴,∴,∴,整理,得,解得∵點C在y軸右側(cè)的拋物線上,∴,此時y=,∴點C的坐標(biāo)(,)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 股東財務(wù)制度管理
- 加工業(yè)企業(yè)財務(wù)制度
- 零售商業(yè)財務(wù)制度
- 農(nóng)技推廣財務(wù)制度
- 銷售人員差旅費財務(wù)制度
- 公司廉潔制度
- 施工工地現(xiàn)場文明管理制度(3篇)
- 計劃方案屬于什么管理制度(3篇)
- 公廁翻新施工方案(3篇)
- 充水打壓施工方案(3篇)
- 2026年湖南工業(yè)職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試備考題庫含答案解析
- 2026年益陽醫(yī)學(xué)高等??茖W(xué)校單招職業(yè)技能筆試參考題庫含答案解析
- 江蘇省南京市2024-2025學(xué)年高一上學(xué)期期末考試歷史試卷(含答案)
- 公共管理倫理學(xué)(修訂版) 課件01導(dǎo)論;02行政倫理觀;03行政倫理規(guī)范
- 計算機高級技師專業(yè)技術(shù)及理論知識試題庫與答案(共500題)
- 鍋爐房清潔衛(wèi)生制度模版(3篇)
- 踝關(guān)節(jié)骨折教學(xué)查房
- 食材配送消防安全應(yīng)急預(yù)案
- 《跨境直播運營》課件-跨境電商交易平臺直播
- 《公園體系規(guī)劃導(dǎo)則》
- 人教部編版統(tǒng)編版八年級歷史上冊期末復(fù)習(xí)資料(復(fù)習(xí)提綱+思維導(dǎo)圖)講義
評論
0/150
提交評論