版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《軸對稱》同步測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在中,,為邊上的中線,,則的度數(shù)為(
).A.55° B.65° C.75° D.45°2、如圖,在△ABC中,AD是BC邊上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,連接FG,交DA的延長線于點(diǎn)E,連接BG,CF,則下列結(jié)論:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正確的有(
)A.①②③ B.①②④ C.①③④ D.①②③④3、如圖,在小正三角形組成的網(wǎng)格中,已有個小正三角形涂黑,還需涂黑個小正三角形,使它們與原來涂黑的小正三角形組成的新圖案恰有三條對稱軸,則的最小值為()A. B. C. D.4、下列黑體字中,屬于軸對稱圖形的是(
)A.善 B.勤 C.健 D.樸5、如圖,按以下步驟進(jìn)行尺規(guī)作圖:(1)以點(diǎn)為圓心,任意長為半徑作弧,交的兩邊,分別于,兩點(diǎn);(2)分別以點(diǎn),為圓心,大于的長為半徑作弧,兩弧在內(nèi)交于點(diǎn);(3)作射線,連接,,.下列結(jié)論錯誤的是(
)A.垂直平分 B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在△ABC中,AC=8,BC=5,AB的垂直平分線DE交AB于點(diǎn)D,交邊AC于點(diǎn)E,則△BCE的周長為_______.2、在平面直角坐標(biāo)系中,點(diǎn)與點(diǎn)關(guān)于軸對稱,則的值是_____.3、如圖,依據(jù)尺規(guī)作圖的痕跡,計算∠α=________°.4、如圖,將一張直角三角形紙片對折,使點(diǎn)B、C重合,折痕為DE,連接DC,若AC=6cm,∠ACB=90°,∠B=30°,則△ADC的周長是_____cm.5、如圖,在中,,點(diǎn),都在邊上,,若,則的長為_______.三、解答題(5小題,每小題10分,共計50分)1、如圖,已知銳角中,.(1)請尺規(guī)作圖:作的BC邊上的高AD;(不寫作法,保留作圖痕跡)(2)在(1)的條件下,若,,則經(jīng)過A,C,D三點(diǎn)的圓的半徑_____________.2、兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,,,,,,在同一條直線上,連結(jié).求的度數(shù).3、已知三邊長a,b,c滿足,試判斷的形狀并求周長.4、(1)如圖1,在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E.求證:△ABD≌△CAE;(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論△ABD≌△CAE是否成立?如成立,請給出證明;若不成立,請說明理由.(3)拓展應(yīng)用:如圖3,D,E是D,A,E三點(diǎn)所在直線m上的兩動點(diǎn)(D,A,E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD,CE,若∠BDA=∠AEC=∠BAC,求證:△DEF是等邊三角形.5、如圖,在中,,過的中點(diǎn)作,,垂足分別為點(diǎn)、.(1)求證:;(2)若,求的度數(shù).-參考答案-一、單選題1、B【解析】【分析】首先根據(jù)三角形的三線合一的性質(zhì)得到AD⊥BC,然后根據(jù)直角三角形的兩銳角互余得到答案即可.【詳解】∵AB=AC,AD是BC邊上的中線,∴AD⊥BC,∠BAD=∠CAD,∴∠B+∠BAD=90°,∵∠B=25°,∴∠BAD=65°,故選:B.【考點(diǎn)】本題考查了等腰三角形的性質(zhì),了解等腰三角形底邊的高、底邊的中線及頂角的平分線互相重合是解答本題的關(guān)鍵.2、D【解析】【分析】證得△CAF≌△GAB(SAS),從而推得①正確;利用△CAF≌△GAB及三角形內(nèi)角和與對頂角,可判斷②正確;證明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,則③正確,同理△ANG≌△CDA,得出NG=AD,則FM=NG,證明△FME≌△GNE(AAS).可得出結(jié)論④正確.【詳解】解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正確;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC與AG所交的對頂角相等,∴BG與FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正確;過點(diǎn)F作FM⊥AE于點(diǎn)M,過點(diǎn)G作GN⊥AE交AE的延長線于點(diǎn)N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正確,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正確.故選:D.【考點(diǎn)】本題綜合考查了全等三角形的判定與性質(zhì)及等腰三角形的三線合一性質(zhì)與互余、對頂角,三角形內(nèi)角和等幾何基礎(chǔ)知識.熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.3、C【解析】【分析】由等邊三角形有三條對稱軸可得答案.【詳解】如圖所示,n的最小值為3.故選C.【考點(diǎn)】本題考查了利用軸對稱設(shè)計圖案,解題的關(guān)鍵是掌握常見圖形的性質(zhì)和軸對稱圖形的性質(zhì).4、A【解析】【分析】軸對稱圖形:把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合,則這個圖形是軸對稱圖形,根據(jù)軸對稱圖形的定義可得答案.【詳解】解:由軸對稱圖形的定義可得:善是軸對稱圖形,勤,健,樸三個字都不是軸對稱圖形,故符合題意,不符合題意,故選:【考點(diǎn)】本題考查的是軸對稱圖形的含義,軸對稱圖形的識別,掌握定義,確定對稱軸是解題的關(guān)鍵.5、D【解析】【分析】利用全等三角形的性質(zhì)以及線段的垂直平分線的判定解決問題即可.【詳解】解:由作圖可知,在△OCD和△OCE中,,∴△OCD≌△OCE(SSS),∴∠DCO=∠ECO,∠1=∠2,∵OD=OE,CD=CE,∴OC垂直平分線段DE,故A,B,C正確,沒有條件能證明CE=OE,故選:D.【考點(diǎn)】本題考查了作圖-基本作圖,全等三角形的判定和性質(zhì),線段的垂直平分線的判定等知識,解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識解決問題.二、填空題1、13【解析】【詳解】已知DE是AB的垂直平分線,根據(jù)線段的垂直平分線的性質(zhì)得到EA=EB,所以△BCE的周長=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案為:13.2、4【解析】【分析】根據(jù)關(guān)于x軸對稱的兩點(diǎn)的橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù)求得a、b的值即可求得答案.【詳解】點(diǎn)與點(diǎn)關(guān)于軸對稱,,,則a+b的值是:,故答案為.【考點(diǎn)】本題考查了關(guān)于x軸對稱的點(diǎn)的坐標(biāo)特征,熟練掌握關(guān)于坐標(biāo)軸對稱的點(diǎn)的坐標(biāo)特征是解此類問題的關(guān)鍵.3、56【解析】【分析】先根據(jù)矩形的性質(zhì)得出AD∥BC,故可得出∠DAC的度數(shù),由角平分線的定義求出∠EAF的度數(shù),再由EF是線段AC的垂直平分線得出∠AEF的度數(shù),根據(jù)三角形內(nèi)角和定理得出∠AFE的度數(shù),進(jìn)而可得出結(jié)論.【詳解】如圖,∵四邊形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分線,∴∠EAF=∠DAC=34°.∵由作法可知,EF是線段AC的垂直平分線,∴∠AEF=90°,∴∠AFE=90°-34°=56°,∴∠α=56°.故答案為:56.4、18【解析】【分析】【詳解】解:根據(jù)折疊前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周長是18cm.故答案為8.5、9.【解析】【分析】根據(jù)等腰三角形的性質(zhì)及全等三角形的判定與性質(zhì)即可求解.【詳解】因?yàn)椤鰽BC是等腰三角形,所以有AB=AC,∠BAD=∠CAE,∠ABD=∠ACE,所以△ABD△ACE(ASA),所以BD=EC,EC=9.【考點(diǎn)】此題主要考查等腰三角形的性質(zhì),解題的關(guān)鍵是熟知全等三角形的判定與性質(zhì).三、解答題1、(1)見解析(2)【解析】【分析】(1)分別以B、C為圓心,大于BC為半徑作弧,兩弧交于點(diǎn)E\,連接AE交BC于D,則AD就是△ABC的高;(2)由AD⊥BC可知,AC是經(jīng)過A,C,D三點(diǎn)的圓的直徑,根據(jù)垂徑定理可知CD=BC=4,由勾股定理可求AC的長,進(jìn)而可求半徑.(1)解:作圖如圖:(2)解:∵AB=AC,AD⊥BC∴AD是△ABC的中線∴BD=CD=∴AC=∵∠ADC=90°∵AC是經(jīng)過A,C、D三點(diǎn)的圓的直徑∴半徑r=故答案為:.【考點(diǎn)】本題考查了基本作圖,等腰三角形的性質(zhì)--“三線合一”,解題的關(guān)鍵是熟知等腰三角形的“三線合一”性質(zhì).2、∠ACD【解析】【分析】根據(jù)SAS證明△ACD≌△ABE,然后根據(jù)全等三角形的性質(zhì)即可得出答案.【詳解】解:∵∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,∴∠BAE=∠CAD,在△ABE與△ACD中,,∴△ACD≌△ABE(SAS),∴∠ACD=∠B.【考點(diǎn)】題考查全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.3、等腰三角形,周長為11【解析】【分析】根據(jù)完全平方公式變形,再根據(jù)非負(fù)性求出a,b,c,故可求解.【詳解】∵∴∴∴a-3=0,b-3=0,c-5=0,∴、、∵∴為等腰三角形,.【考點(diǎn)】此題主要考查等腰三角形的判定,解題的關(guān)鍵是熟知完全平方公式的特點(diǎn)、非負(fù)性的運(yùn)用.4、(1)見詳解;(2)成立,理由見詳解;(3)見詳解【解析】【分析】(1)根據(jù)直線,直線得,而,根據(jù)等角的余角相等得,然后根據(jù)“”可判斷;(2)利用,則,得出,然后問題可求證;(3)由題意易得,由(1)(2)易證,則有,然后可得,進(jìn)而可證,最后問題可得證.【詳解】(1)證明:直線,直線,,,,,,在和中,,;解:(2)成立,理由如下:,,,在和中,,;(3)證明:∵△ABF和△ACF均為等邊三角形,∴,∴∠BDA=∠AEC=∠BAC=120°,∴,∴,∴,∴,∵,∴,∴(SAS),∴,∴,∴△DFE是等邊三角形.【考點(diǎn)】本題主要考查全等三角形的判定與性質(zhì)及等邊三角形的性質(zhì)與判定,熟練掌握全等三角形的判定與性質(zhì)及等邊三角形的性質(zhì)與判定是解題的關(guān)鍵.5、(1)證明見解析;(2)=80°【解析】【分析】(1)利用已知條件和等腰三角形的性質(zhì)證明,根據(jù)全等三角形的性質(zhì)即可證明;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年地面伽瑪射線全譜儀項(xiàng)目合作計劃書
- 2025年商業(yè)保理項(xiàng)目建議書
- 2025年婚慶床品項(xiàng)目發(fā)展計劃
- 員工財務(wù)方面培訓(xùn)課件
- 幽門狹窄護(hù)理操作技能培訓(xùn)
- 員工關(guān)系課件
- 呼吸系統(tǒng)疾病護(hù)理科研方法
- 護(hù)理質(zhì)量管理標(biāo)準(zhǔn)解讀
- 聽音磨耳朵課件
- 消防安全繪畫大賽通知
- 2025超重和肥胖管理指南課件
- 武警拓展訓(xùn)練方案
- 化肥產(chǎn)品生產(chǎn)許可證實(shí)施細(xì)則(一)(復(fù)肥產(chǎn)品部分)2025
- 初中be動詞的使用
- 婦產(chǎn)科考試試題及答案
- 光伏電站運(yùn)維人員培訓(xùn)與技能提升方案
- 安全文明施工資料管理方案
- 《國家十五五規(guī)劃綱要》全文
- GB/T 46194-2025道路車輛信息安全工程
- 2025年國考《行測》全真模擬試卷一及答案
- 國家開放大學(xué)2025年商務(wù)英語4綜合測試答案
評論
0/150
提交評論