重難點解析人教版8年級數(shù)學上冊《軸對稱》章節(jié)測試試題(含答案及解析)_第1頁
重難點解析人教版8年級數(shù)學上冊《軸對稱》章節(jié)測試試題(含答案及解析)_第2頁
重難點解析人教版8年級數(shù)學上冊《軸對稱》章節(jié)測試試題(含答案及解析)_第3頁
重難點解析人教版8年級數(shù)學上冊《軸對稱》章節(jié)測試試題(含答案及解析)_第4頁
重難點解析人教版8年級數(shù)學上冊《軸對稱》章節(jié)測試試題(含答案及解析)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《軸對稱》章節(jié)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、2020年初,新冠狀病毒引發(fā)肺炎疫情,全國多家醫(yī)院紛紛派醫(yī)護人員馳援武漢.下面是四家醫(yī)院標志得圖案,其中是軸對稱圖形得是(

)A. B.C. D.2、如圖,在中,DE是AC的垂直平分線,,的周長為13cm,則的周長為(

)A.16cm B.13cm C.19cm D.10cm3、如圖,在△ABC中,AB=AC,∠C=70°,△AB′C′與△ABC關于直線EF對稱,∠CAF=10°,連接BB′,則∠ABB′的度數(shù)是(

)A.30° B.35° C.40° D.45°4、等腰三角形一腰上的高與另一腰的夾角為,則頂角的度數(shù)為(

)A. B. C.或 D.或5、觀察下列作圖痕跡,所作CD為△ABC的邊AB上的中線是()A. B.C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、(1)等腰三角形底邊長為6cm,一腰上的中線把它的周長分成兩部分的差為2cm,則腰長為________.(2)已知的周長為24,,于點D,若的周長為20,則AD的長為________.(3)已知等腰三角形的周長為24,腰長為x,則x的取值范圍是________.2、如圖,在矩形ABCD中,AD=6,AB=4,∠BAD的平分線交BC于點E,則DE=____.3、如圖,將長方形紙片按如圖所示的方式折疊,為折痕,點落在,點落在點在同一直線上,則_______度;4、如圖,是內(nèi)一定點,點,分別在邊,上運動,若,,則的周長的最小值為___________.5、如圖,將一張長方形紙條折疊,若,則的度數(shù)為__________.三、解答題(5小題,每小題10分,共計50分)1、如圖,已知∠AOB,作∠AOB的平分線OC,將直角尺DEMN如圖所示擺放,使EM邊與OB邊重合,頂點D落在OA邊上,DN邊與OC交于點P.(1)猜想DOP是三角形;(2)補全下面證明過程:∵OC平分∠AOB∴=∵DN∥EM∴=∴=∴=2、已知點,.若、關于軸對稱,求的值.3、兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,,,,,,在同一條直線上,連結.求的度數(shù).4、如圖,在中,,D為的中點.(1)寫出點D到三個頂點A、B、C的距離的關系(不要求證明).(2)如果點M、N分別在線段上移動,在移動中保持,請判斷的形狀,并證明你的結論.5、如圖,是邊長為1的等邊三角形,,,點,分別在,上,且,求的周長.-參考答案-一、單選題1、B【解析】【分析】根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:選項B能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是做軸對稱圖形;選項A、C、D不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是做軸對稱圖形;故選:B.【考點】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.2、C【解析】【分析】根據(jù)線段垂直平分線性質得出,求出AC和的長,即可求出答案.【詳解】解:∵DE是AC的垂直平分線,,∴,,∵的周長為13cm,∴,∴,∴的周長為,故選:C.【考點】考查垂直平分線的性質,三角形周長問題,解題的關鍵是掌握垂直平分線的性質.3、C【解析】【分析】由軸對稱圖形的性質可得△BAC≌△B′AC′,進而結合三角形內(nèi)角和定理即可得出答案.【詳解】如圖,連接BB′,∵△AB′C′與△ABC關于直線EF對稱,∴△BAC≌△B′AC′,∵AB=AC,∠C=70°,∴∠ABC=∠AC′B′=∠AB′C′=70°,∴∠BAC=∠B′AC′=40°,∵∠CAF=10°,∴∠C′AF=10°,∴∠BAB′=40°+10°+10°+40°=100°,∴∠ABB′=∠AB′B=40°,故選C.【考點】本題考查了軸對稱圖形的性質以及等腰三角形的性質,正確得出∠BAC的度數(shù)是解題關鍵.4、D【解析】【分析】分等腰三角形為銳角三角形和鈍角三角形兩種情況,然后分別根據(jù)直角三角形兩銳角互余即可得.【詳解】依題意,分以下兩種情況:(1)如圖1,等腰為銳角三角形,頂角為,(2)如圖2,等腰為鈍角三角形,頂角為,綜上,頂角的度數(shù)為或故選:D.【考點】本題考查了等腰三角形的定義、直角三角形兩銳角互余等知識點,依據(jù)題意,正確分兩種情況討論是解題關鍵.5、B【解析】【分析】根據(jù)題意,CD為△ABC的邊AB上的中線,就是作AB邊的垂直平分線,交AB于點D,點D即為線段AB的中點,連接CD即可判斷.【詳解】解:作AB邊的垂直平分線,交AB于點D,連接CD,∴點D即為線段AB的中點,∴CD為△ABC的邊AB上的中線.故選:B.【考點】本題主要考查三角形一邊的中線的作法;作該邊的中垂線,找出該邊的中點是解題關鍵.二、填空題1、

4cm或8cm

8

【解析】【分析】(1)根據(jù)題意畫出圖形,由題意得,即可得,又由等腰三角形的底邊長為6cm,即可求得答案.(2)由△ABC的周長為24得到AB,BC的關系,由△ABD的周長為20得到AB,BD,AD的關系,再由等腰三角形的性質知,BC為BD的2倍,故可解出AD的值.(3)設底邊長為y,再由三角形的三邊關系即可得出答案.【詳解】(1)如圖,,BD是中線由題意得存在兩種情況:①②①,∵∴②,∵∴∴腰長為:4cm或8cm故答案為:4cm或8cm.(2)∵△ABC的周長為24,∴∵∴∴∴∵的周長為20∴∴故答案為:8.(3)設底邊長為y∵等腰三角形的周長為24,腰長為x∴∴,即解得故答案為:.【考點】本題考查了三角形的綜合問題,掌握等腰三角形的性質、等腰三角形三線合一的性質、三角形的周長定義、三角形的三邊關系是解題的關鍵.2、2【解析】【分析】由矩形的性質及角平分線的性質解得,,即可證明是等腰直角三角形,從而解得,最后在中利用勾股定理解題即可.【詳解】在矩形ABCD中,平分是等腰直角三角形中故答案為:2.【考點】本題考查矩形的性質、等腰直角三角形的判定與性質、勾股定理等知識,是重要考點,難度較易,掌握相關知識是解題關鍵.3、【解析】【分析】由折疊的性質可得,,再由角的和差及平角的定義即可求出答案.【詳解】解:由題意得:,,∵在同一直線上,∴.故答案為:90.【考點】本題主要考查了折疊的性質和平角的定義,屬于基本題型,熟練掌握折疊的性質是解題的關鍵.4、3【解析】【分析】如圖,作P關于OA,OB的對稱點C,D.連接OC,OD.則當M,N是CD與OA,OB的交點時,△PMN的周長最短,最短的值是CD的長.根據(jù)對稱的性質可以證得:△COD是等邊三角形,據(jù)此即可求解.【詳解】如圖,作P關于OA,OB的對稱點C,D.連接OC,OD.則當M,N是CD與OA,OB的交點時,△PMN的周長最短,最短的值是CD的長.∵點P關于OA的對稱點為C,∴PM=CM,OP=OC,∠COA=∠POA;∵點P關于OB的對稱點為D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等邊三角形,∴CD=OC=OD=3.∴△PMN的周長的最小值=PM+MN+PN=CM+MN+DN≥CD=3.【考點】此題主要考查軸對稱--最短路線問題,綜合運用了等邊三角形的知識.正確作出圖形,理解△PMN周長最小的條件是解題的關鍵.5、130°【解析】【分析】延長DC到點E,如圖,根據(jù)平行線的性質可得∠BCE=∠ABC=25°,根據(jù)折疊的性質可得∠ACB=∠BCE=25°,進一步即可求出答案.【詳解】解:延長DC到點E,如圖:∵AB∥CD,∴∠BCE=∠ABC=25°,由折疊可得:∠ACB=∠BCE=25°,∵∠BCE+∠ACB+∠ACD=180°,∴∠ACD=180°﹣∠BCE﹣∠ACB=180°﹣25°﹣25°=130°,故答案為:130°.【考點】此題主要考查了平行線的性質和折疊的性質,正確添加輔助線、熟練掌握平行線的性質是解決問題的關鍵.三、解答題1、等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD,見解析【解析】【分析】(1)三角形的種類有多種,從邊和角的關系上看常見的有:等腰三角形、等邊三角形、直角三角形、觀察此三角形即可大體猜想出三角形的類型;(2)根據(jù)角平分線的性質和平行線的性質,求得∠DOP=∠DPO,即可判斷三角形的形狀.【詳解】解:(1)我們猜想△DOP是等腰三角形;(2)補全下面證明過程:∵OC平分∠AOB,∴∠DOP=∠BOP,∵DN∥EM,∴∠DPO=∠BOP,∴∠DOP=∠DPO,∴OD=PD.故答案為:等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD.【考點】本題考查了角平分線的性質和平行線的性質及等腰三角形,解決本題的關鍵是掌握平行線的性質定理,找到相等的角.2、1【解析】【分析】先根據(jù)、關于軸對稱,求出a和b的值,然后代入計算即可.【詳解】解:∵、關于軸對稱,∴,解得,∴=.【考點】本題考查了關于y軸對稱的點的坐標特征,解二元一次方程組,求代數(shù)式的值,熟練掌握關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù)是解答本題的關鍵.3、∠ACD【解析】【分析】根據(jù)SAS證明△ACD≌△ABE,然后根據(jù)全等三角形的性質即可得出答案.【詳解】解:∵∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,∴∠BAE=∠CAD,在△ABE與△ACD中,,∴△ACD≌△ABE(SAS),∴∠ACD=∠B.【考點】題考查全等三角形的判定和性質、等腰直角三角形的性質等知識,解題的關鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.4、(1);(2)為等腰直角三角形,理由見解析.【解析】【分析】(1)根據(jù)直角三角形的性質可知CD=BD=AD;(2)連接AD,可證明,則可證得DM=DN,,再利用,可證明,據(jù)此解題.【詳解】解:(1)中,為BC的中點,即點D到三個頂點的距離相等;(2)為等腰直角三角形,理由如下,證明:連接AD,與中,為等腰直角三角形.【考點】本題考查等腰直角三角形、全等三角形的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論