版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025-2026學(xué)年內(nèi)蒙古自治區(qū)包頭市三十三中數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某高中高三(1)班為了沖刺高考,營(yíng)造良好的學(xué)習(xí)氛圍,向班內(nèi)同學(xué)征集書法作品貼在班內(nèi)墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細(xì)節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰(shuí)寫的,班主任對(duì)三人進(jìn)行了問(wèn)話,得到回復(fù)如下:小王說(shuō):“入班即靜”是我寫的;小董說(shuō):“天道酬勤”不是小王寫的,就是我寫的;小李說(shuō):“細(xì)節(jié)決定成敗”不是我寫的.若三人的說(shuō)法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李2.三棱柱中,底面邊長(zhǎng)和側(cè)棱長(zhǎng)都相等,,則異面直線與所成角的余弦值為()A. B. C. D.3.函數(shù)在的圖像大致為A. B. C. D.4.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎(jiǎng),現(xiàn)甲從盒中隨機(jī)取出2張,則至少有一張有獎(jiǎng)的概率為()A. B. C. D.5.已知數(shù)列的首項(xiàng),且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有6.已知滿足,,,則在上的投影為()A. B. C. D.27.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是()A. B. C. D.8.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是()A. B. C. D.9.已知雙曲線的離心率為,拋物線的焦點(diǎn)坐標(biāo)為,若,則雙曲線的漸近線方程為()A. B.C. D.10.已知是空間中兩個(gè)不同的平面,是空間中兩條不同的直線,則下列說(shuō)法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則11.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問(wèn)題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無(wú)廣,高二丈,問(wèn):積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長(zhǎng)4丈,上棱長(zhǎng)2丈,高2丈,問(wèn):它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長(zhǎng)為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺12.已知實(shí)數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]二、填空題:本題共4小題,每小題5分,共20分。13.若四棱錐的側(cè)面內(nèi)有一動(dòng)點(diǎn)Q,已知Q到底面的距離與Q到點(diǎn)P的距離之比為正常數(shù)k,且動(dòng)點(diǎn)Q的軌跡是拋物線,則當(dāng)二面角平面角的大小為時(shí),k的值為_(kāi)_____.14.已知向量=(-4,3),=(6,m),且,則m=__________.15.已知向量,,若向量與向量平行,則實(shí)數(shù)___________.16.已知雙曲線的一條漸近線經(jīng)過(guò)點(diǎn),則該雙曲線的離心率為_(kāi)______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),解不等式;(2)設(shè),且當(dāng)時(shí),不等式有解,求實(shí)數(shù)的取值范圍.18.(12分)已知函數(shù),.(1)當(dāng)時(shí),求函數(shù)的值域;(2),,求實(shí)數(shù)的取值范圍.19.(12分)已知數(shù)列的前項(xiàng)和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)若,,且數(shù)列前項(xiàng)和為,求的取值范圍.20.(12分)已知?jiǎng)訄A過(guò)定點(diǎn),且與直線相切,動(dòng)圓圓心的軌跡為,過(guò)作斜率為的直線與交于兩點(diǎn),過(guò)分別作的切線,兩切線的交點(diǎn)為,直線與交于兩點(diǎn).(1)證明:點(diǎn)始終在直線上且;(2)求四邊形的面積的最小值.21.(12分)隨著互聯(lián)網(wǎng)金融的不斷發(fā)展,很多互聯(lián)網(wǎng)公司推出余額增值服務(wù)產(chǎn)品和活期資金管理服務(wù)產(chǎn)品,如螞蟻金服旗下的“余額寶”,騰訊旗下的“財(cái)富通”,京東旗下“京東小金庫(kù)”.為了調(diào)查廣大市民理財(cái)產(chǎn)品的選擇情況,隨機(jī)抽取1200名使用理財(cái)產(chǎn)品的市民,按照使用理財(cái)產(chǎn)品的情況統(tǒng)計(jì)得到如下頻數(shù)分布表:分組頻數(shù)(單位:名)使用“余額寶”使用“財(cái)富通”使用“京東小金庫(kù)”30使用其他理財(cái)產(chǎn)品50合計(jì)1200已知這1200名市民中,使用“余額寶”的人比使用“財(cái)富通”的人多160名.(1)求頻數(shù)分布表中,的值;(2)已知2018年“余額寶”的平均年化收益率為,“財(cái)富通”的平均年化收益率為.若在1200名使用理財(cái)產(chǎn)品的市民中,從使用“余額寶”和使用“財(cái)富通”的市民中按分組用分層抽樣方法共抽取7人,然后從這7人中隨機(jī)選取2人,假設(shè)這2人中每個(gè)人理財(cái)?shù)馁Y金有10000元,這2名市民2018年理財(cái)?shù)睦⒖偤蜑?,求的分布列及?shù)學(xué)期望.注:平均年化收益率,也就是我們所熟知的利息,理財(cái)產(chǎn)品“平均年化收益率為”即將100元錢存入某理財(cái)產(chǎn)品,一年可以獲得3元利息.22.(10分)已知矩陣不存在逆矩陣,且非零特低值對(duì)應(yīng)的一個(gè)特征向量,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
根據(jù)題意,分別假設(shè)一個(gè)正確,推理出與假設(shè)不矛盾,即可得出結(jié)論.【詳解】解:由題意知,若只有小王的說(shuō)法正確,則小王對(duì)應(yīng)“入班即靜”,而否定小董說(shuō)法后得出:小王對(duì)應(yīng)“天道酬勤”,則矛盾;若只有小董的說(shuō)法正確,則小董對(duì)應(yīng)“天道酬勤”,否定小李的說(shuō)法后得出:小李對(duì)應(yīng)“細(xì)節(jié)決定成敗”,所以剩下小王對(duì)應(yīng)“入班即靜”,但與小王的錯(cuò)誤的說(shuō)法矛盾;若小李的說(shuō)法正確,則“細(xì)節(jié)決定成敗”不是小李的,則否定小董的說(shuō)法得出:小王對(duì)應(yīng)“天道酬勤”,所以得出“細(xì)節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.本題考查推理證明的實(shí)際應(yīng)用.2.B【解析】
設(shè),,,根據(jù)向量線性運(yùn)算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設(shè)棱長(zhǎng)為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項(xiàng):本題考查異面直線所成角的求解,關(guān)鍵是能夠通過(guò)向量的線性運(yùn)算、數(shù)量積運(yùn)算將問(wèn)題轉(zhuǎn)化為向量夾角的求解問(wèn)題.3.B【解析】
由分子、分母的奇偶性,易于確定函數(shù)為奇函數(shù),由的近似值即可得出結(jié)果.【詳解】設(shè),則,所以是奇函數(shù),圖象關(guān)于原點(diǎn)成中心對(duì)稱,排除選項(xiàng)C.又排除選項(xiàng)D;,排除選項(xiàng)A,故選B.本題通過(guò)判斷函數(shù)的奇偶性,縮小考察范圍,通過(guò)計(jì)算特殊函數(shù)值,最后做出選擇.本題較易,注重了基礎(chǔ)知識(shí)、基本計(jì)算能力的考查.4.C【解析】
先計(jì)算出總的基本事件的個(gè)數(shù),再計(jì)算出兩張都沒(méi)獲獎(jiǎng)的個(gè)數(shù),根據(jù)古典概型的概率,求出兩張都沒(méi)有獎(jiǎng)的概率,由對(duì)立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機(jī)取出2張,共有種情況,2張均沒(méi)有獎(jiǎng)的情況有(種),故所求概率為.故選:C.本題考查古典概型的概率、對(duì)立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.5.C【解析】
根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【詳解】A:當(dāng)時(shí),,顯然符合是等差數(shù)列,但是此時(shí)不成立,故本說(shuō)法不正確;B:當(dāng)時(shí),,顯然符合是等比數(shù)列,但是此時(shí)不成立,故本說(shuō)法不正確;C:當(dāng)時(shí),因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時(shí),一定有,故本說(shuō)法正確;D:當(dāng)時(shí),若時(shí),顯然數(shù)列是等比數(shù)列,故本說(shuō)法不正確.故選:C本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.6.A【解析】
根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A本題考查向量的投影,屬于基礎(chǔ)題.7.A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求得的坐標(biāo)得出答案.【詳解】解:,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是.故選:A.本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.8.B【解析】
根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時(shí)不能輸出,繼續(xù)循環(huán);第二步:,此時(shí)不能輸出,繼續(xù)循環(huán);第三步:,此時(shí)不能輸出,繼續(xù)循環(huán);第四步:,此時(shí)不能輸出,繼續(xù)循環(huán);第五步:,此時(shí)不能輸出,繼續(xù)循環(huán);第六步:,此時(shí)要輸出,結(jié)束循環(huán);故,判斷條件為.故選B本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于??碱}型.9.A【解析】
求出拋物線的焦點(diǎn)坐標(biāo),得到雙曲線的離心率,然后求解a,b關(guān)系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點(diǎn)坐標(biāo)為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用.10.D【解析】
利用線面平行和垂直的判定定理和性質(zhì)定理,對(duì)選項(xiàng)做出判斷,舉出反例排除.【詳解】解:對(duì)于,當(dāng),且,則與的位置關(guān)系不定,故錯(cuò);對(duì)于,當(dāng)時(shí),不能判定,故錯(cuò);對(duì)于,若,且,則與的位置關(guān)系不定,故錯(cuò);對(duì)于,由可得,又,則故正確.故選:.本題考查空間線面位置關(guān)系.判斷線面位置位置關(guān)系利用好線面平行和垂直的判定定理和性質(zhì)定理.一般可借助正方體模型,以正方體為主線直觀感知并準(zhǔn)確判斷.11.A【解析】由題意,將楔體分割為三棱柱與兩個(gè)四棱錐的組合體,作出幾何體的直觀圖如圖所示:
沿上棱兩端向底面作垂面,且使垂面與上棱垂直,
則將幾何體分成兩個(gè)四棱錐和1個(gè)直三棱柱,
則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點(diǎn)睛】本題考查三視圖及幾何體體積的計(jì)算,其中正確還原幾何體,利用方格數(shù)據(jù)分割與計(jì)算是解題的關(guān)鍵.12.B【解析】
作出可行域,表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,,,過(guò)與直線平行的直線斜率為-1,∴.故選:B.本題考查簡(jiǎn)單的非線性規(guī)劃.解題關(guān)鍵是理解非線性目標(biāo)函數(shù)的幾何意義,本題表示動(dòng)點(diǎn)與定點(diǎn)連線斜率,由直線與可行域的關(guān)系可得結(jié)論.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
二面角平面角為,點(diǎn)Q到底面的距離為,點(diǎn)Q到定直線得距離為d,則.再由點(diǎn)Q到底面的距離與到點(diǎn)P的距離之比為正常數(shù)k,可得,由此可得,則由可求k值.【詳解】解:如圖,設(shè)二面角平面角為,點(diǎn)Q到底面的距離為,點(diǎn)Q到定直線的距離為d,則,即.∵點(diǎn)Q到底面的距離與到點(diǎn)P的距離之比為正常數(shù)k,∴,則,∵動(dòng)點(diǎn)Q的軌跡是拋物線,∴,即則.∴二面角的平面角的余弦值為解得:().故答案為:.本題考查了四棱錐的結(jié)構(gòu)特征,由四棱錐的側(cè)面與底面的夾角求參數(shù)值,屬于中檔題.14.8.【解析】
利用轉(zhuǎn)化得到加以計(jì)算,得到.【詳解】向量則.本題考查平面向量的坐標(biāo)運(yùn)算、平面向量的數(shù)量積、平面向量的垂直以及轉(zhuǎn)化與化歸思想的應(yīng)用.屬于容易題.15.【解析】
由題可得,因?yàn)橄蛄颗c向量平行,所以,解得.16.【解析】
根據(jù)雙曲線方程,可得漸近線方程,結(jié)合題意可表示,再由雙曲線a,b,c關(guān)系表示,最后結(jié)合雙曲線離心率公式計(jì)算得答案.【詳解】因?yàn)殡p曲線為,所以該雙曲線的漸近線方程為.又因?yàn)槠湟粭l漸近線經(jīng)過(guò)點(diǎn),即,則,由此可得.故答案為:.本題考查由雙曲線的漸近線構(gòu)建方程表示系數(shù)關(guān)系進(jìn)而求離心率,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2).【解析】
(1)通過(guò)分類討論去掉絕對(duì)值符號(hào),進(jìn)而解不等式組求得結(jié)果;(2)將不等式整理為,根據(jù)能成立思想可知,由此構(gòu)造不等式求得結(jié)果.【詳解】(1)當(dāng)時(shí),可化為,由,解得;由,解得;由,解得.綜上所述:所以原不等式的解集為.(2),,,,有解,,即,又,,實(shí)數(shù)的取值范圍是.本題考查絕對(duì)值不等式的求解、根據(jù)不等式有解求解參數(shù)范圍的問(wèn)題;關(guān)鍵是明確對(duì)于不等式能成立的問(wèn)題,通過(guò)分離變量的方式將問(wèn)題轉(zhuǎn)化為所求參數(shù)與函數(shù)最值之間的比較問(wèn)題.18.(1);(2).【解析】
(1)將代入函數(shù)的解析式,將函數(shù)的及解析式變形為分段函數(shù),利用二次函數(shù)的基本性質(zhì)可求得函數(shù)的值域;(2)由參變量分離法得出在區(qū)間內(nèi)有解,分和討論,求得函數(shù)的最大值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),.當(dāng)時(shí),;當(dāng)時(shí),.函數(shù)的值域?yàn)?;?)不等式等價(jià)于,即在區(qū)間內(nèi)有解當(dāng)時(shí),,此時(shí),,則;當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞增,當(dāng)時(shí),,則.綜上,實(shí)數(shù)的取值范圍是.本題主要考查含絕對(duì)值函數(shù)的值域與含絕對(duì)值不等式有解的問(wèn)題,利用絕對(duì)值的應(yīng)用將函數(shù)轉(zhuǎn)化為二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵,考查分類討論思想的應(yīng)用,屬于中等題.19.(1)(2)【解析】
(1)由,可求,然后由時(shí),可得,根據(jù)等比數(shù)列的通項(xiàng)可求(2)由,而,利用裂項(xiàng)相消法可求.【詳解】(1)當(dāng)時(shí),,解得,當(dāng)時(shí),①②②①得,即,數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列,;(2)∴,∴,,.本題考查遞推公式在數(shù)列的通項(xiàng)求解中的應(yīng)用,等比數(shù)列的通項(xiàng)公式、裂項(xiàng)求和方法,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.20.(1)見(jiàn)解析(2)最小值為1.【解析】
(1)根據(jù)拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設(shè)出兩點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此求得點(diǎn)的坐標(biāo).寫出直線的方程,聯(lián)立直線的方程和曲線的方程,根據(jù)韋達(dá)定理求得點(diǎn)的坐標(biāo),并由此判斷出始終在直線上,且.(2)設(shè)直線的傾斜角為,求得的表達(dá)式,求得的表達(dá)式,由此求得四邊形的面積的表達(dá)式進(jìn)而求得四邊形的面積的最小值.【詳解】(1)∵動(dòng)圓過(guò)定點(diǎn),且與直線相切,∴動(dòng)圓圓心到定點(diǎn)和定直線的距離相等,∴動(dòng)圓圓心的軌跡是以為焦點(diǎn)的拋物線,∴軌跡的方程為:,設(shè),∴
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年信息安全防護(hù)與監(jiān)測(cè)系統(tǒng)項(xiàng)目可行性研究報(bào)告
- 2025年智慧農(nóng)業(yè)示范園區(qū)建設(shè)項(xiàng)目可行性研究報(bào)告
- 2025年區(qū)塊鏈技術(shù)在供應(yīng)鏈應(yīng)用可行性研究報(bào)告
- 2025年城鄉(xiāng)一體化發(fā)展戰(zhàn)略可行性研究報(bào)告
- 2025年智能周邊設(shè)施建設(shè)項(xiàng)目可行性研究報(bào)告
- 供貨保證協(xié)議書
- 中緬邊境協(xié)議書
- 美吉姆銷售協(xié)議書
- 高一歷史期中考試題庫(kù)含解析及答案
- 《GB-T 37716-2019信息技術(shù) 學(xué)習(xí)、教育和培訓(xùn) 電子課本與電子書包術(shù)語(yǔ)》專題研究報(bào)告
- 酒店行業(yè)的信息安全培訓(xùn)方法
- 塑料制品行業(yè)財(cái)務(wù)工作年度績(jī)效報(bào)告
- 皮膚科護(hù)理中的振動(dòng)按摩在皮膚病管理中的應(yīng)用
- 20以內(nèi)進(jìn)位加法100題(精心整理6套-可打印A4)
- 腸內(nèi)營(yíng)養(yǎng)考評(píng)標(biāo)準(zhǔn)終
- 2023屆高考專題復(fù)習(xí):小說(shuō)專題訓(xùn)練群體形象與個(gè)體形象(含答案)
- 項(xiàng)目全周期現(xiàn)金流管理培訓(xùn)
- 生物化學(xué)實(shí)驗(yàn)智慧樹知到答案章節(jié)測(cè)試2023年浙江大學(xué)
- 等腰三角形復(fù)習(xí)課教案
- GB/T 39741.1-2021滑動(dòng)軸承公差第1部分:配合
- GB/T 19228.3-2012不銹鋼卡壓式管件組件第3部分:O形橡膠密封圈
評(píng)論
0/150
提交評(píng)論