高三數(shù)學(xué)等差數(shù)列多選題專項訓(xùn)練知識點-+典型題含答案_第1頁
高三數(shù)學(xué)等差數(shù)列多選題專項訓(xùn)練知識點-+典型題含答案_第2頁
高三數(shù)學(xué)等差數(shù)列多選題專項訓(xùn)練知識點-+典型題含答案_第3頁
高三數(shù)學(xué)等差數(shù)列多選題專項訓(xùn)練知識點-+典型題含答案_第4頁
高三數(shù)學(xué)等差數(shù)列多選題專項訓(xùn)練知識點-+典型題含答案_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

高三數(shù)學(xué)等差數(shù)列多選題專項訓(xùn)練知識點-+典型題含答案一、等差數(shù)列多選題1.等差數(shù)列是遞增數(shù)列,公差為,前項和為,滿足,下列選項正確的是()A. B.C.當(dāng)時最小 D.時的最小值為解析:BD【分析】由題意可知,由已知條件可得出,可判斷出AB選項的正誤,求出關(guān)于的表達(dá)式,利用二次函數(shù)的基本性質(zhì)以及二次不等式可判斷出CD選項的正誤.【詳解】由于等差數(shù)列是遞增數(shù)列,則,A選項錯誤;,則,可得,B選項正確;,當(dāng)或時,最小,C選項錯誤;令,可得,解得或.,所以,滿足時的最小值為,D選項正確.故選:BD.2.已知等差數(shù)列的前n項和為,公差,,是與的等比中項,則下列選項正確的是()A. B.C.當(dāng)且僅當(dāng)時,取最大值 D.當(dāng)時,n的最小值為22解析:AD【分析】運(yùn)用等差數(shù)列的通項公式和求和公式,解方程可得首項和公差,可判斷A,B;由二次函數(shù)的配方法,結(jié)合n為正整數(shù),可判斷C;由解不等式可判斷D.【詳解】等差數(shù)列的前n項和為,公差,由,可得,即,①由是與的等比中項,得,即,化為,②由①②解得,,則,,由,可得或11時,取得最大值110;由,解得,則n的最小值為22.故選:AD【點睛】本題考查等差數(shù)列的通項公式和求和公式,以及等比中項的性質(zhì),二次函數(shù)的最值求法,考查方程思想和運(yùn)算能力,屬于中檔題.3.?dāng)?shù)列滿足,則下列說法正確的是()A.?dāng)?shù)列是等差數(shù)列 B.?dāng)?shù)列的前n項和C.?dāng)?shù)列的通項公式為 D.?dāng)?shù)列為遞減數(shù)列解析:ABD【分析】首項根據(jù)得到,從而得到是以首項為,公差為的等差數(shù)列,再依次判斷選項即可.【詳解】對選項A,因為,,所以,即所以是以首項為,公差為的等差數(shù)列,故A正確.對選項B,由A知:數(shù)列的前n項和,故B正確.對選項C,因為,所以,故C錯誤.對選項D,因為,所以數(shù)列為遞減數(shù)列,故D正確.故選:ABD【點睛】本題主要考查等差數(shù)列的通項公式和前n項和前n項和,同時考查了遞推公式,屬于中檔題.4.已知數(shù)列的前n項和為則下列說法正確的是()A.為等差數(shù)列 B.C.最小值為 D.為單調(diào)遞增數(shù)列解析:AD【分析】利用求出數(shù)列的通項公式,可對A,B,D進(jìn)行判斷,對進(jìn)行配方可對C進(jìn)行判斷【詳解】解:當(dāng)時,,當(dāng)時,,當(dāng)時,滿足上式,所以,由于,所以數(shù)列為首項為,公差為2的等差數(shù)列,因為公差大于零,所以為單調(diào)遞增數(shù)列,所以A,D正確,B錯誤,由于,而,所以當(dāng)或時,取最小值,且最小值為,所以C錯誤,故選:AD【點睛】此題考查的關(guān)系,考查由遞推式求通項并判斷等差數(shù)列,考查等差數(shù)列的單調(diào)性和前n項和的最值問題,屬于基礎(chǔ)題5.定義為數(shù)列的“優(yōu)值”已知某數(shù)列的“優(yōu)值”,前n項和為,則()A.?dāng)?shù)列為等差數(shù)列 B.?dāng)?shù)列為等比數(shù)列C. D.,,成等差數(shù)列解析:AC【分析】由題意可知,即,則時,,可求解出,易知是等差數(shù)列,則A正確,然后利用等差數(shù)列的前n項和公式求出,判斷C,D的正誤.【詳解】解:由,得,所以時,,得時,,即時,,當(dāng)時,由知,滿足.所以數(shù)列是首項為2,公差為1的等差數(shù)列,故A正確,B錯,所以,所以,故C正確.,,,故D錯,故選:AC.【點睛】本題考查數(shù)列的新定義問題,考查數(shù)列通項公式的求解及前n項和的求解,難度一般.6.已知數(shù)列為等差數(shù)列,則下列說法正確的是()A.(d為常數(shù)) B.?dāng)?shù)列是等差數(shù)列C.?dāng)?shù)列是等差數(shù)列 D.是與的等差中項解析:ABD【分析】由等差數(shù)列的性質(zhì)直接判斷AD選項,根據(jù)等差數(shù)列的定義的判斷方法判斷BC選項.【詳解】A.因為數(shù)列是等差數(shù)列,所以,即,所以A正確;B.因為數(shù)列是等差數(shù)列,所以,那么,所以數(shù)列是等差數(shù)列,故B正確;C.,不是常數(shù),所以數(shù)列不是等差數(shù)列,故C不正確;D.根據(jù)等差數(shù)列的性質(zhì)可知,所以是與的等差中項,故D正確.故選:ABD【點睛】本題考查等差數(shù)列的性質(zhì)與判斷數(shù)列是否是等差數(shù)列,屬于基礎(chǔ)題型.7.是等差數(shù)列,公差為d,前項和為,若,,則下列結(jié)論正確的是()A. B. C. D.解析:ABD【分析】結(jié)合等差數(shù)列的性質(zhì)、前項和公式,及題中的條件,可選出答案.【詳解】由,可得,故B正確;由,可得,由,可得,所以,故等差數(shù)列是遞減數(shù)列,即,故A正確;又,所以,故C不正確;又因為等差數(shù)列是單調(diào)遞減數(shù)列,且,所以,所以,故D正確.故選:ABD.【點睛】關(guān)鍵點點睛:本題考查等差數(shù)列性質(zhì)的應(yīng)用,解題的關(guān)鍵是熟練掌握等差數(shù)列的增減性及前項和的性質(zhì),本題要從題中條件入手,結(jié)合公式,及,對選項逐個分析,可判斷選項是否正確.考查學(xué)生的運(yùn)算求解能力與邏輯推理能力,屬于中檔題.8.(多選題)在數(shù)列中,若,(,,為常數(shù)),則稱為“等方差數(shù)列”.下列對“等方差數(shù)列”的判斷正確的是()A.若是等差數(shù)列,則是等方差數(shù)列B.是等方差數(shù)列C.若是等方差數(shù)列,則(,為常數(shù))也是等方差數(shù)列D.若既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列解析:BCD【分析】根據(jù)定義以及舉特殊數(shù)列來判斷各選項中結(jié)論的正誤.【詳解】對于A選項,取,則不是常數(shù),則不是等方差數(shù)列,A選項中的結(jié)論錯誤;對于B選項,為常數(shù),則是等方差數(shù)列,B選項中的結(jié)論正確;對于C選項,若是等方差數(shù)列,則存在常數(shù),使得,則數(shù)列為等差數(shù)列,所以,則數(shù)列(,為常數(shù))也是等方差數(shù)列,C選項中的結(jié)論正確;對于D選項,若數(shù)列為等差數(shù)列,設(shè)其公差為,則存在,使得,則,由于數(shù)列也為等方差數(shù)列,所以,存在實數(shù),使得,則對任意的恒成立,則,得,此時,數(shù)列為常數(shù)列,D選項正確.故選BCD.【點睛】本題考查數(shù)列中的新定義,解題時要充分利用題中的定義進(jìn)行判斷,也可以結(jié)合特殊數(shù)列來判斷命題不成立,考查邏輯推理能力,屬于中等題.9.等差數(shù)列的前項和為,,則下列結(jié)論一定正確的是()A. B.當(dāng)或10時,取最大值C. D.解析:AD【分析】由求出,即,由此表示出、、、,可判斷C、D兩選項;當(dāng)時,,有最小值,故B錯誤.【詳解】解:,,故正確A.由,當(dāng)時,,有最小值,故B錯誤.,所以,故C錯誤.,,故D正確.故選:AD【點睛】考查等差數(shù)列的有關(guān)量的計算以及性質(zhì),基礎(chǔ)題.10.朱世杰是元代著名數(shù)學(xué)家,他所著的《算學(xué)啟蒙》是一部在中國乃至世界最早的科學(xué)普及著作.《算學(xué)啟蒙》中涉及一些“堆垛”問題,主要利用“堆垛”研究數(shù)列以及數(shù)列的求和問題.現(xiàn)有100根相同的圓形鉛筆,小明模仿“堆垛”問題,將它們?nèi)慷逊懦煽v斷面為等腰梯形的“垛”,要求層數(shù)不小于2,且從最下面一層開始,每一層比上一層多1根,則該“等腰梯形垛”應(yīng)堆放的層數(shù)可以是()A.4 B.5 C.7 D.8解析:BD【分析】依據(jù)題意,根數(shù)從上至下構(gòu)成等差數(shù)列,設(shè)首項即第一層的根數(shù)為,公差即每一層比上一層多的根數(shù)為,設(shè)一共放層,利用等差數(shù)列求和公式,分析即可得解.【詳解】依據(jù)題意,根數(shù)從上至下構(gòu)成等差數(shù)列,設(shè)首項即第一層的根數(shù)為,公差為,設(shè)一共放層,則總得根數(shù)為:整理得,因為,所以為200的因數(shù),且為偶數(shù),驗證可知滿足題意.故選:BD.【點睛】關(guān)鍵點睛:本題考查等差數(shù)列的求和公式,解題的關(guān)鍵是分析題意,把題目信息轉(zhuǎn)化為等差數(shù)列,考查學(xué)生的邏輯推理能力與運(yùn)算求解能力,屬于基礎(chǔ)題.11.斐波那契數(shù)列,又稱黃金分割數(shù)列、兔子數(shù)列,是數(shù)學(xué)家列昂多·斐波那契于1202年提出的數(shù)列.斐波那契數(shù)列為1,1,2,3,5,8,13,21,……,此數(shù)列從第3項開始,每一項都等于前兩項之和,記該數(shù)列為,則的通項公式為()A.B.且C.D.解析:BC【分析】根據(jù)數(shù)列的前幾項歸納出數(shù)列的通項公式,再驗證即可;【詳解】解:斐波那契數(shù)列為1,1,2,3,5,8,13,21,……,顯然,,,,,所以且,即B滿足條件;由,所以所以數(shù)列是以為首項,為公比的等比數(shù)列,所以所以,令,則,所以,所以以為首項,為公比的等比數(shù)列,所以,所以;即C滿足條件;故選:BC【點睛】考查等比數(shù)列的性質(zhì)和通項公式,數(shù)列遞推公式的應(yīng)用,本題運(yùn)算量較大,難度較大,要求由較高的邏輯思維能力,屬于中檔題.12.已知等差數(shù)列的前n項和為,公差為d,且,,則()A. B. C. D.解析:BD【分析】由等差數(shù)列下標(biāo)和性質(zhì)結(jié)合前項和公式,求出,可判斷C,D,由等差數(shù)列基本量運(yùn)算,可得公差,判斷出A,B.【詳解】因為,所以.因為,,所以公差.故選:BD13.設(shè)等差數(shù)列的前項和為.若,,則()A. B.C. D.解析:BC【分析】由已知條件列方程組,求出公差和首項,從而可求出通項公式和前項和公式【詳解】解:設(shè)等差數(shù)列的公差為,因為,,所以,解得,所以,,故選:BC14.黃金螺旋線又名等角螺線,是自然界最美的鬼斧神工.在一個黃金矩形(寬長比約等于0.618)里先以寬為邊長做正方形,然后在剩下小的矩形里以其寬為邊長做正方形,如此循環(huán)下去,再在每個正方形里畫出一段四分之一圓弧,最后順次連接,就可得到一條“黃金螺旋線”.達(dá)·芬奇的《蒙娜麗莎》,希臘雅典衛(wèi)城的帕特農(nóng)神廟等都符合這個曲線.現(xiàn)將每一段黃金螺旋線與其所在的正方形所圍成的扇形半徑設(shè)為an(n∈N*),數(shù)列{an}滿足a1=a2=1,an=an-1+an-2(n≥3).再將扇形面積設(shè)為bn(n∈N*),則()A.4(b2020-b2019)=πa2018·a2021 B.a(chǎn)1+a2+a3+…+a2019=a2021-1C.a(chǎn)12+a22+a32…+(a2020)2=2a2019·a2021 D.a(chǎn)2019·a2021-(a2020)2+a2018·a2020-(a2019)2=0解析:ABD【分析】對于A,由題意得bn=an2,然后化簡4(b2020-b2019)可得結(jié)果;對于B,利用累加法求解即可;對于C,數(shù)列{an}滿足a1=a2=1,an=an-1+an-2(n≥3),即an-1=an-2-an,兩邊同乘an-1,可得an-12=an-1an-2-an-1an,然后累加求解;對于D,由題意an-1=an-an-2,則a2019·a2021-(a2020)2+a2018·a2020-(a2019)2,化簡可得結(jié)果【詳解】由題意得bn=an2,則4(b2020-b2019)=4(a20202-a20192)=π(a2020+a2019)(a2020-a2019)=πa2018·a2021,則選項A正確;又?jǐn)?shù)列{an}滿足a1=a2=1,an=an-1+an-2(n≥3),所以an-2=an-an-1(n≥3),a1+a2+a3+…+a2019=(a3-a2)+(a4-a3)+(a5-a4)+…+(a2021-a2020)=a2021-a2=a2021-1,則選項B正確;數(shù)列{an}滿足a1=a2=1,an=an-1+an-2(n≥3),即an-1=an-2-an,兩邊同乘an-1,可得an-12=an-1an-2-an-1an,則a12+a22+a32…+(a2020)2=a12+(a2a1-a2a3)+(a3a2-a3a4)+…+(a2020a2019-a2020a2021)=a12-a2020a2021=1-a2020a2021,則選項C錯誤;由題意an-1=an-an-2,則a2019·a2021-(a2020)2+a2018·a2020-(a2019)2=a2019·(a2021-a2019)+a2020·(a2018-a2020)=a2019·a2020+a2020·(-a2019)=0,則選項D正確;故選:ABD.【點睛】此題考查數(shù)列的遞推式的應(yīng)用,考查累加法的應(yīng)用,考查計算能力,屬于中檔題15.已知數(shù)列滿足,(),數(shù)列的前項和為,則()A. B.C. D.解析:BC【分析】根據(jù)遞推公式,得到,令,得到,可判斷A錯,B正確;根據(jù)求和公式,得到,求出,可得C正確,D錯.【詳解】由可知,即,當(dāng)時,則,即得到,故選項B正確;無法計算,故A錯;,所以,則,故選項C正確,選項D錯誤.故選:BC.【點睛】方法點睛:由遞推公式求通項公式的常用方法:(1)累加法,形如的數(shù)列,求通項時,常用累加法求解;(2)累乘法,形如的數(shù)列,求通項時,常用累乘法求解;(3)構(gòu)造法,形如(且,,)的數(shù)列,求通項時,常需要構(gòu)造成等比數(shù)列求解;(4)已知與的關(guān)系求通項時,一般可根據(jù)求解.16.題目文件丟失!17.題目文件丟失!18.已知數(shù)列是等差數(shù)列,前n項和為且下列結(jié)論中正確的是()A.最小 B. C. D.解析:BCD【分析】由是等差數(shù)列及,求出與的關(guān)系,結(jié)合等差數(shù)列的通項公式及求和公式即可進(jìn)行判斷.【詳解】設(shè)等差數(shù)列數(shù)列的公差為.由有,即所以,則選項D正確.選項A.,無法判斷其是否有最小值,故A錯誤.選項B.,故B正確.選項C.,所以,故C正確.故選:BCD【點睛】關(guān)鍵點睛:本題考查等差數(shù)列的通項公式及求和公式的應(yīng)用,解答本題的關(guān)鍵是由條件得到,即,然后由等差數(shù)列的性質(zhì)和前項和公式判斷,屬于中檔題.19.意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一列數(shù):1,1,2,3,5,….,其中從第三項起,每個數(shù)等于它前面兩個數(shù)的和,后來人們把這樣的一列數(shù)組成的數(shù)列稱為“斐波那契數(shù)列”,記為數(shù)列的前n項和,則下列結(jié)論正確的是()A. B.C. D.解析:ABCD【分析】由題意可得數(shù)列滿足遞推關(guān)系,對照四個選項可得正確答案.【詳解】對A,寫出數(shù)列的前6項為,故A正確;對B,,故B正確;對C,由,,,……,,可得:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論