版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆甘肅省甘南藏族自治州夏河縣中考數(shù)學(xué)模擬預(yù)測試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一個多邊形內(nèi)角和是外角和的2倍,它是()A.五邊形 B.六邊形 C.七邊形 D.八邊形2.學(xué)校小組名同學(xué)的身高(單位:)分別為:,,,,,則這組數(shù)據(jù)的中位數(shù)是().A. B. C. D.3.如圖,已知△ADE是△ABC繞點A逆時針旋轉(zhuǎn)所得,其中點D在射線AC上,設(shè)旋轉(zhuǎn)角為α,直線BC與直線DE交于點F,那么下列結(jié)論不正確的是()A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α4.如圖,某同學(xué)不小心把一塊三角形的玻璃打碎成三片,現(xiàn)在他要到玻璃店去配一塊完全一樣形狀的玻璃.那么最省事的辦法是帶()A.帶③去 B.帶②去 C.帶①去 D.帶①②去5.如圖,在矩形ABCD中,AB=2,BC=1.若點E是邊CD的中點,連接AE,過點B作BF⊥AE交AE于點F,則BF的長為()A. B. C. D.6.如圖,點O′在第一象限,⊙O′與x軸相切于H點,與y軸相交于A(0,2),B(0,8),則點O′的坐標(biāo)是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)7.由6個大小相同的正方體搭成的幾何體如圖所示,比較它的正視圖、左視圖和俯視圖的面積,則()A.三個視圖的面積一樣大 B.主視圖的面積最小C.左視圖的面積最小 D.俯視圖的面積最小8.方程組的解x、y滿足不等式2x﹣y>1,則a的取值范圍為()A.a(chǎn)≥ B.a(chǎn)> C.a(chǎn)≤ D.a(chǎn)>9.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是AB,BC的中點,點F是BD的中點.若AB=10,則EF=()A.2.5 B.3 C.4 D.510.如果關(guān)于x的方程沒有實數(shù)根,那么c在2、1、0、中取值是()A.; B.; C.; D..二、填空題(共7小題,每小題3分,滿分21分)11.拋物線y=2x2+4向左平移2個單位長度,得到新拋物線的表達式為_____.12.安全問題大于天,為加大宣傳力度,提高學(xué)生的安全意識,樂陵某學(xué)校在進行防溺水安全教育活動中,將以下幾種在游泳時的注意事項寫在紙條上并折好,內(nèi)容分別是:①互相關(guān)心;②互相提醒;③不要相互嬉水;④相互比潛水深度;⑤選擇水流湍急的水域;⑥選擇有人看護的游泳池.小穎從這6張紙條中隨機抽出一張,抽到內(nèi)容描述正確的紙條的概率是_____.13.李明早上騎自行車上學(xué),中途因道路施工推車步行了一段路,到學(xué)校共用時15分鐘.如果他騎自行車的平均速度是每分鐘250米,推車步行的平均速度是每分鐘80米,他家離學(xué)校的路程是2900米,設(shè)他推車步行的時間為x分鐘,那么可列出的方程是_____________.14.若關(guān)于x的分式方程的解為非負(fù)數(shù),則a的取值范圍是_____.15.如圖,△ABC與△DEF位似,點O為位似中心,若AC=3DF,則OE:EB=_____.16.在某一時刻,測得一根長為1.5m的標(biāo)桿的影長為3m,同時測得一根旗桿的影長為26m,那么這根旗桿的高度為_____m.17.如圖,Rt△ABC的直角邊BC在x軸上,直線y=x﹣經(jīng)過直角頂點B,且平分△ABC的面積,BC=3,點A在反比例函數(shù)y=圖象上,則k=_______.三、解答題(共7小題,滿分69分)18.(10分)某射擊隊教練為了了解隊員訓(xùn)練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如下:命中環(huán)數(shù)678910甲命中相應(yīng)環(huán)數(shù)的次數(shù)01310乙命中相應(yīng)環(huán)數(shù)的次數(shù)20021(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);
(2)試通過計算說明甲、乙兩人的成績誰比較穩(wěn)定?
(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會變小.(填“變大”、“變小”或“不變”)19.(5分)解不等式組:,并將它的解集在數(shù)軸上表示出來.20.(8分)如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.(1)求證:ED為⊙O的切線;(2)若⊙O的半徑為3,ED=4,EO的延長線交⊙O于F,連DF、AF,求△ADF的面積.21.(10分)“足球運球”是中考體育必考項目之一.蘭州市某學(xué)校為了解今年九年級學(xué)生足球運球的掌握情況,隨機抽取部分九年級學(xué)生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)根據(jù)所給信息,解答以下問題:(1)在扇形統(tǒng)計圖中,C對應(yīng)的扇形的圓心角是度;(2)補全條形統(tǒng)計圖;(3)所抽取學(xué)生的足球運球測試成績的中位數(shù)會落在等級;(4)該校九年級有300名學(xué)生,請估計足球運球測試成績達到A級的學(xué)生有多少人?22.(10分)為了支持大學(xué)生創(chuàng)業(yè),某市政府出臺了一項優(yōu)惠政策:提供10萬元的無息創(chuàng)業(yè)貸款.小王利用這筆貸款,注冊了一家淘寶網(wǎng)店,招收5名員工,銷售一種火爆的電子產(chǎn)品,并約定用該網(wǎng)店經(jīng)營的利潤,逐月償還這筆無息貸款.已知該產(chǎn)品的成本為每件4元,員工每人每月的工資為4千元,該網(wǎng)店還需每月支付其它費用1萬元.該產(chǎn)品每月銷售量y(萬件)與銷售單價x(元)萬件之間的函數(shù)關(guān)系如圖所示.求該網(wǎng)店每月利潤w(萬元)與銷售單價x(元)之間的函數(shù)表達式;小王自網(wǎng)店開業(yè)起,最快在第幾個月可還清10萬元的無息貸款?23.(12分)某中學(xué)為了提高學(xué)生的消防意識,舉行了消防知識競賽,所有參賽學(xué)生分別設(shè)有一、二、三等獎和紀(jì)念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中所經(jīng)信息解答下列問題:(1)這次知識競賽共有多少名學(xué)生?(2)“二等獎”對應(yīng)的扇形圓心角度數(shù),并將條形統(tǒng)計圖補充完整;(3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.24.(14分)如圖,在四邊形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的長.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
多邊形的外角和是310°,則內(nèi)角和是2×310=720°.設(shè)這個多邊形是n邊形,內(nèi)角和是(n﹣2)?180°,這樣就得到一個關(guān)于n的方程,從而求出邊數(shù)n的值.【詳解】設(shè)這個多邊形是n邊形,根據(jù)題意得:(n﹣2)×180°=2×310°解得:n=1.故選B.本題考查了多邊形的內(nèi)角與外角,熟記內(nèi)角和公式和外角和定理并列出方程是解題的關(guān)鍵.根據(jù)多邊形的內(nèi)角和定理,求邊數(shù)的問題就可以轉(zhuǎn)化為解方程的問題來解決.2、C【解析】
根據(jù)中位數(shù)的定義進行解答【詳解】將5名同學(xué)的身高按從高到矮的順序排列:159、156、152、151、147,因此這組數(shù)據(jù)的中位數(shù)是152.故選C.本題主要考查中位數(shù),解題的關(guān)鍵是熟練掌握中位數(shù)的定義:一組數(shù)據(jù)按從小到大(或從大到小)的順序依次排列,處在中間位置的一個數(shù)(或最中間兩個數(shù)據(jù)的平均數(shù))稱為中位數(shù).3、D【解析】
利用旋轉(zhuǎn)不變性即可解決問題.【詳解】∵△DAE是由△BAC旋轉(zhuǎn)得到,
∴∠BAC=∠DAE=α,∠B=∠D,
∵∠ACB=∠DCF,
∴∠CFD=∠BAC=α,
故A,B,C正確,
故選D.本題考查旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟練掌握旋轉(zhuǎn)不變性解決問題,屬于中考??碱}型.4、A【解析】
第一塊和第二塊只保留了原三角形的一個角和部分邊,根據(jù)這兩塊中的任一塊均不能配一塊與原來完全一樣的;第三塊不僅保留了原來三角形的兩個角還保留了一邊,則可以根據(jù)ASA來配一塊一樣的玻璃.【詳解】③中含原三角形的兩角及夾邊,根據(jù)ASA公理,能夠唯一確定三角形.其它兩個不行.故選:A.此題主要考查全等三角形的運用,熟練掌握,即可解題.5、B【解析】
根據(jù)S△ABE=S矩形ABCD=1=?AE?BF,先求出AE,再求出BF即可.【詳解】如圖,連接BE.∵四邊形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=?AE?BF,∴BF=.故選:B.本題考查矩形的性質(zhì)、勾股定理、三角形的面積公式等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用面積法解決有關(guān)線段問題,屬于中考??碱}型.6、D【解析】
過O'作O'C⊥AB于點C,過O'作O'D⊥x軸于點D,由切線的性質(zhì)可求得O'D的長,則可得O'B的長,由垂徑定理可求得CB的長,在Rt△O'BC中,由勾股定理可求得O'C的長,從而可求得O'點坐標(biāo).【詳解】如圖,過O′作O′C⊥AB于點C,過O′作O′D⊥x軸于點D,連接O′B,∵O′為圓心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8?2=6,∴AC=BC=3,∴OC=8?3=5,∵⊙O′與x軸相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P點坐標(biāo)為(4,5),故選:D.本題考查了切線的性質(zhì),坐標(biāo)與圖形性質(zhì),解題的關(guān)鍵是掌握切線的性質(zhì)和坐標(biāo)計算.7、C【解析】試題分析:根據(jù)三視圖的意義,可知正視圖由5個面,左視圖有3個面,俯視圖有4個面,故可知主視圖的面積最大.故選C考點:三視圖8、B【解析】
方程組兩方程相加表示出2x﹣y,代入已知不等式即可求出a的范圍.【詳解】①+②得:解得:故選:B.此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.9、A【解析】
先利用直角三角形的性質(zhì)求出CD的長,再利用中位線定理求出EF的長.【詳解】∵∠ACB=90°,D為AB中點∴CD=1∵點E、F分別為BC、BD中點∴EF=1故答案為:A.本題考查的知識點是直角三角形的性質(zhì)和中位線定理,解題關(guān)鍵是尋找EF與題目已知長度的線段的數(shù)量關(guān)系.10、A【解析】分析:由方程根的情況,根據(jù)根的判別式可求得c的取值范圍,則可求得答案.詳解:∵關(guān)于x的方程x1+1x+c=0沒有實數(shù)根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故選A.點睛:本題主要考查了根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關(guān)系是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、y=2(x+2)2+1【解析】試題解析:∵二次函數(shù)解析式為y=2x2+1,∴頂點坐標(biāo)(0,1)向左平移2個單位得到的點是(-2,1),可設(shè)新函數(shù)的解析式為y=2(x-h)2+k,代入頂點坐標(biāo)得y=2(x+2)2+1,故答案為y=2(x+2)2+1.點睛:函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.12、【解析】
根據(jù)事件的描述可得到描述正確的有①②③⑥,即可得到答案.【詳解】∵共有6張紙條,其中正確的有①互相關(guān)心;②互相提醒;③不要相互嬉水;⑥選擇有人看護的游泳池,共4張,∴抽到內(nèi)容描述正確的紙條的概率是,故答案為:.此題考查簡單事件的概率的計算,正確掌握事件的概率計算公式是解題的關(guān)鍵.13、【解析】分析:根據(jù)題意把李明步行和騎車各自所走路程表達出來,再結(jié)合步行和騎車所走總里程為2900米,列出方程即可.詳解:設(shè)他推車步行的時間為x分鐘,根據(jù)題意可得:80x+250(15-x)=2900.故答案為80x+250(15-x)=2900.點睛:弄清本題中的等量關(guān)系:李明推車步行的路程+李明騎車行駛的路程=2900是解題的關(guān)鍵.14、且【解析】分式方程去分母得:2(2x-a)=x-2,去括號移項合并得:3x=2a-2,解得:,∵分式方程的解為非負(fù)數(shù),∴且,解得:a≥1且a≠4.15、1:2【解析】
△ABC與△DEF是位似三角形,則DF∥AC,EF∥BC,先證明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,據(jù)此可得答案.【詳解】解:∵△ABC與△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,則OE:EB=1:2故答案為:1:2本題考查了位似的相關(guān)知識,位似是相似的特殊形式,位似比等于相似比,位似圖形的對應(yīng)頂點的連線平行或共線.16、13【解析】
根據(jù)同時同地物高與影長成比列式計算即可得解.【詳解】解:設(shè)旗桿高度為x米,由題意得,,解得x=13.故答案為13.本題考查投影,解題的關(guān)鍵是應(yīng)用相似三角形.17、1【解析】分析:根據(jù)題意得出點B的坐標(biāo),根據(jù)面積平分得出點D的坐標(biāo),利用三角形相似可得點A的坐標(biāo),從而求出k的值.詳解:根據(jù)一次函數(shù)可得:點B的坐標(biāo)為(1,0),∵BD平分△ABC的面積,BC=3∴點D的橫坐標(biāo)1.5,∴點D的坐標(biāo)為,∵DE:AB=1:1,∴點A的坐標(biāo)為(1,1),∴k=1×1=1.點睛:本題主要考查的是反比例函數(shù)的性質(zhì)以及三角形相似的應(yīng)用,屬于中等難度的題型.得出點D的坐標(biāo)是解決這個問題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)8,6和9;(2)甲的成績比較穩(wěn)定;(3)變小【解析】
(1)根據(jù)眾數(shù)、中位數(shù)的定義求解即可;
(2)根據(jù)平均數(shù)的定義先求出甲和乙的平均數(shù),再根據(jù)方差公式求出甲和乙的方差,然后進行比較,即可得出答案;
(3)根據(jù)方差公式進行求解即可.【詳解】解:(1)把甲命中環(huán)數(shù)從小到大排列為7,8,8,8,9,最中間的數(shù)是8,則中位數(shù)是8;
在乙命中環(huán)數(shù)中,6和9都出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則乙命中環(huán)數(shù)的眾數(shù)是6和9;
故答案為8,6和9;
(2)甲的平均數(shù)是:(7+8+8+8+9)÷5=8,
則甲的方差是:[(7-8)2+3(8-8)2+(9-8)2]=0.4,
乙的平均數(shù)是:(6+6+9+9+10)÷5=8,
則甲的方差是:[2(6-8)2+2(9-8)2+(10-8)2]=2.8,
所以甲的成績比較穩(wěn)定;
(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差變小.
故答案為變?。绢}考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差通常用s2來表示,計算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了算術(shù)平均數(shù)、中位數(shù)和眾數(shù).19、-1≤x<4,在數(shù)軸上表示見解析.【解析】試題分析:分別求出各不等式的解集,再求出其公共解集,并在數(shù)軸上表示出來即可.試題解析:,由①得,x<4;由②得,x??1.故不等式組的解集為:?1?x<4.在數(shù)軸上表示為:20、(1)見解析;(2)△ADF的面積是.【解析】試題分析:(1)連接OD,CD,求出∠BDC=90°,根據(jù)OE∥AB和OA=OC求出BE=CE,推出DE=CE,根據(jù)SSS證△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;
(2)過O作OM⊥AB于M,過F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根據(jù)sin∠BAC=,求出OM,根據(jù)cos∠BAC=,求出AM,根據(jù)垂徑定理求出AD,代入三角形的面積公式求出即可.試題解析:(1)證明:連接OD,CD,∵AC是⊙O的直徑,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD過圓心O,∴ED為⊙O的切線.(2)過O作OM⊥AB于M,過F作FN⊥AB于N,則OM∥FN,∠OMN=90°,∵OE∥AB,∴四邊形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴,∴,∴AB=10,在Rt△BCA中,由勾股定理得:BC==8,sin∠BAC=,即,OM==FN,∵cos∠BAC=,∴AM=由垂徑定理得:AD=2AM=,即△ADF的面積是AD×FN=××=.答:△ADF的面積是.【點睛】考查了切線的性質(zhì)和判定,勾股定理,三角形的面積,垂徑定理,直角三角形的斜邊上中線性質(zhì),全等三角形的性質(zhì)和判定等知識點的運用,通過做此題培養(yǎng)了學(xué)生的分析問題和解決問題的能力.21、(1)117(2)見解析(3)B(4)30【解析】
(1)先根據(jù)B等級人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他等級人數(shù)求得C等級人數(shù),繼而用360°乘以C等級人數(shù)所占比例即可得;(2)根據(jù)以上所求結(jié)果即可補全圖形;(3)根據(jù)中位數(shù)的定義求解可得;(4)總?cè)藬?shù)乘以樣本中A等級人數(shù)所占比例可得.【詳解】解:(1)∵總?cè)藬?shù)為18÷45%=40人,∴C等級人數(shù)為40﹣(4+18+5)=13人,則C對應(yīng)的扇形的圓心角是360°×=117°,故答案為117;(2)補全條形圖如下:(3)因為共有40個數(shù)據(jù),其中位數(shù)是第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在B等級,所以所抽取學(xué)生的足球運球測試成績的中位數(shù)會落在B等級,故答案為B.(4)估計足球運球測試成績達到A級的學(xué)生有300×=30人.本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?2、(1)當(dāng)4≤x≤6時,w1=﹣x2+12x﹣35,當(dāng)6≤x≤8時,w2=﹣x2+7x﹣23;(2)最快在第7個月可還清10萬元的無息貸款.【解析】分析:(1)y(萬件)與銷售單價x是分段函數(shù),根據(jù)待定系數(shù)法分別求直線AB和BC的解析式,又分兩種情況,根據(jù)利潤=(售價﹣成本)×銷售量﹣費用,得結(jié)論;(2)分別計算兩個利潤的最大值,比較可得出利潤的最大值,最后計算時間即可求解.詳解:(1)設(shè)直線AB的解析式為:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直線AB的解析式為:y=﹣x+8,同理代入B(6,2),C(8,1)可得直線BC的解析式為:y=﹣x+5,∵工資及其他費作為:0.4×5+1=3萬元,∴當(dāng)4≤x≤6時,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,當(dāng)6≤x≤8時,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(2)當(dāng)4≤x≤6時,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴當(dāng)x=6時,w1取最大值是1,當(dāng)6≤x≤8時,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,當(dāng)x=7時,w2取最大值是1.5,∴==6,即最快在第7個月可還清10萬元的無息貸款.點睛:本題主要
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- AISTEAM教學(xué)中項目式學(xué)習(xí)評價與學(xué)習(xí)成果展示課題報告教學(xué)研究課題報告
- 校企合作構(gòu)建人工智能教育質(zhì)量監(jiān)控體系研究教學(xué)研究課題報告
- 2025年高端無人機研發(fā)生產(chǎn)基地建設(shè)規(guī)劃可行性報告
- 全國一等獎統(tǒng)編版語文二年級下冊《古詩二首-詠柳》公開課精美課件
- 2026年生物科技醫(yī)療健康產(chǎn)業(yè)分析報告
- 2025-2026學(xué)年廣東深圳紅嶺中學(xué)七年級上學(xué)期期中考英語試題
- 保險代理人進級制度
- 交警節(jié)假日值班制度
- 兩都巡幸制度
- 2026年泰和縣教育體育局所屬事業(yè)單位競爭性選調(diào)工作人員的備考題庫及完整答案詳解1套
- 北京通州產(chǎn)業(yè)服務(wù)有限公司招聘參考題庫必考題
- 催收管理制度及流程規(guī)范
- 交通安全志愿者培訓(xùn)課件
- 化工防止靜電安全培訓(xùn)課件
- AI藥物研發(fā)中的倫理風(fēng)險防控
- 出鐵廠鐵溝澆注施工方案
- 2025年江蘇省泰州市保安員理論考試題庫及答案(完整)
- 公司酶制劑發(fā)酵工工藝技術(shù)規(guī)程
- 大數(shù)據(jù)分析在供熱中的應(yīng)用方案
- 污泥安全管理制度范本
- 開題報告范文基于人工智能的醫(yī)學(xué)像分析與診斷系統(tǒng)設(shè)計
評論
0/150
提交評論