強(qiáng)化訓(xùn)練人教版8年級數(shù)學(xué)上冊《全等三角形》同步訓(xùn)練試題(解析卷)_第1頁
強(qiáng)化訓(xùn)練人教版8年級數(shù)學(xué)上冊《全等三角形》同步訓(xùn)練試題(解析卷)_第2頁
強(qiáng)化訓(xùn)練人教版8年級數(shù)學(xué)上冊《全等三角形》同步訓(xùn)練試題(解析卷)_第3頁
強(qiáng)化訓(xùn)練人教版8年級數(shù)學(xué)上冊《全等三角形》同步訓(xùn)練試題(解析卷)_第4頁
強(qiáng)化訓(xùn)練人教版8年級數(shù)學(xué)上冊《全等三角形》同步訓(xùn)練試題(解析卷)_第5頁
已閱讀5頁,還剩28頁未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》同步訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,則∠AFE的度數(shù)等于()A.148° B.140° C.135° D.128°2、如圖,C為線段AE上一動點(diǎn)(不與點(diǎn),重合),在AE同側(cè)分別作等邊三角形ABC和等邊三角形CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連結(jié)PQ.以下結(jié)論錯(cuò)誤的是(

)A.∠AOB=60° B.AP=BQC.PQ∥AE D.DE=DP3、如圖,在△ABC中,∠C=90°,點(diǎn)D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°4、小明不慎將一塊三角形的玻璃摔碎成如圖所示的四塊(即圖中標(biāo)有1、2、3、4的四塊),你認(rèn)為將其中的哪一些塊帶去,就能配一塊與原來一樣大小的三角形?應(yīng)該帶(

)A.第1塊 B.第2塊 C.第3塊 D.第4塊5、如圖,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=7cm,則△DBE的周長是(

)A.6cm B.7cm C.8cm D.9cm6、如圖,在和中,,,,線段BC的延長線交DE于點(diǎn)F,連接AF.若,,,則線段EF的長度為(

)A.4 B. C.5 D.7、如圖,在中,,的平分線交于點(diǎn)E,于點(diǎn)D,若的周長為12,,則的周長為(

)A.9 B.8 C.7 D.68、如圖,已知,,,是上的兩個(gè)點(diǎn),,,若,,,則的長為(

)A. B. C. D.9、如圖:∠B=∠C=90°,E是BC的中點(diǎn),DE平分∠ADC,則下列說法正確的有幾個(gè)(

)(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;

(4)AE⊥DE.(5)DE=AEA.2個(gè) B.3個(gè) C.4個(gè) D.510、下列說法正確的是(

)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點(diǎn)所表示的數(shù)為;④用反證法證明命題“一個(gè)三角形最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角”;⑤如圖,在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn).A.1 B.2 C.3 D.4第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,兩根旗桿間相距20米,某人從點(diǎn)B沿BA走向點(diǎn)A,一段時(shí)間后他到達(dá)點(diǎn)M,此時(shí)他分別仰望旗桿的頂點(diǎn)C和D,兩次視線的夾角為90°,且CM=DM.已知旗桿BD的高為12米,該人的運(yùn)動速度為2米/秒,則這個(gè)人運(yùn)動到點(diǎn)M所用時(shí)間是__________秒.2、如圖,中,,三角形的外角和的平分線交于點(diǎn)E,則的度數(shù)為________.3、在△ABC中,AB=4,AC=3,AD是△ABC的角平分線,則△ABD與△ACD的面積之比是_____.4、如圖,在中,,F(xiàn)是高AD和BE的交點(diǎn),cm,則線段BF的長度為______.5、如圖,已知AD是△ABC的中線,E是AC上的一點(diǎn),BE交AD于F,AC=BF,∠DAC=24°,∠EBC=32°,則∠ACB=_____.6、如圖,點(diǎn)B,E,C,F(xiàn)在一條直線上,AB∥DF,AB=DF,若△ABC≌△DFE,則需添加的條件是________.(填一個(gè)即可)7、如圖,點(diǎn)B,F(xiàn),C,E在一條直線上,,,請?zhí)砑右粋€(gè)條件,使≌,這個(gè)添加的條件可以是______(只需寫一個(gè),不添加輔助線).8、如圖,在Rt△ABC中,∠B=90°,以頂點(diǎn)C為圓心、適當(dāng)長為半徑畫弧,分別交AC、BC于點(diǎn)E、F,再分別以點(diǎn)E、F為圓心,以大于EF的長為半徑畫弧,兩弧交于點(diǎn)P,作射線CP交AB于點(diǎn)D.若BD=4,AC=16,則△ACD的面積是______.9、如圖,將一張直角三角形紙片對折,使點(diǎn)B、C重合,折痕為DE,連接DC,若AC=6cm,∠ACB=90°,∠B=30°,則△ADC的周長是_____cm.10、如圖,在和中,點(diǎn)B、E、C、F在同一條直線上,且,,請你再添加一個(gè)適當(dāng)?shù)臈l件:________________,使.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,已知△ABC.求作:BC邊上的高與內(nèi)角∠B的角平分線的交點(diǎn).2、如圖,等腰三角形中,,.作于點(diǎn),將線段繞著點(diǎn)順時(shí)針旋轉(zhuǎn)角后得到線段,連接.(1)求證:;(2)延長線段,交線段于點(diǎn).求的度數(shù)(用含有的式子表示).3、如圖,在△ABC中,∠ABC=90°,AB=CB,點(diǎn)E在邊BC上,點(diǎn)F在邊AB的延長線上,BE=BF.

(1)求證:△ABE≌△CBF;

(2)若∠CAE=30°,求∠ACF的度數(shù).4、如圖,已知中,,是內(nèi)一點(diǎn),且,試說明的理由.5、在△ABC中,∠ACB=90°,AC=BC,且AD⊥MN于D,BE⊥MN于E.(1)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(1)的位置時(shí),求證:DE=AD+BE;(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(2)的位置時(shí),試問DE、AD、BE具有怎樣的等量關(guān)系?請直接寫出這個(gè)等量關(guān)系(不寫證明過程);(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(3)的位置時(shí),試問DE、AD、BE具有怎樣的等量關(guān)系?請直接寫出這個(gè)等量關(guān)系(不寫證明過程).-參考答案-一、單選題1、A【解析】【分析】根據(jù)已知條件可知△ABC≌△EDB,由全等可得到∠A=∠E,并利用三角形內(nèi)角和可求得∠E,再應(yīng)用外角和求得∠AFE.【詳解】∵BD=BC,BE=CA,∠DBE=∠C,∴△ABC≌△EDB(SAS),∴∠A=∠E,∵∠DBE=62°,∠BDE=75°,∴∠E=180°﹣60°﹣75°=43°,∴∠A=43°,∵∠BDE+∠ADE=180°,∴∠ADE=105°,∴∠AFE=∠ADE+∠A=105°+43°=148°.故選:A.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì)、三角形外角和、內(nèi)角和定理,難度不大,但要注意數(shù)形結(jié)合思想的運(yùn)用.2、D【解析】【分析】利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,得出A正確;根據(jù)△CQB≌△CPA(ASA),得出B正確;由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,得出C正確;根據(jù)∠CDE=60°,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,可知∠DQE≠∠CDE,得出D錯(cuò)誤.【詳解】解:∵等邊△ABC和等邊△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD與△BCE中,,∴△ACD≌△BCE(SAS),∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,在△CQB與△CPA中,,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ為等邊三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故C正確,∵△CQB≌△CPA,∴AP=BQ,故B正確,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故D錯(cuò)誤;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,故A正確.故選:D.【考點(diǎn)】本題考查了等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì),利用旋轉(zhuǎn)不變性,解題的關(guān)鍵是找到不變量.3、D【解析】【分析】根據(jù)鄰補(bǔ)角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點(diǎn)】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.4、B【解析】【分析】本題應(yīng)先假定選擇哪塊,再對應(yīng)三角形全等判定的條件進(jìn)行驗(yàn)證.【詳解】解:1、3、4塊玻璃不同時(shí)具備包括一完整邊在內(nèi)的三個(gè)證明全等的要素,所以不能帶它們?nèi)ィ挥械?塊有完整的兩角及夾邊,符合ASA,滿足題目要求的條件,是符合題意的.故選:B.【考點(diǎn)】本題主要考查三角形全等的判定,看這4塊玻璃中哪個(gè)包含的條件符合某個(gè)判定.判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對應(yīng)相等時(shí),角必須是兩邊的夾角.5、B【解析】【分析】由在△ABC中,∠C=90°,AC=BC,∠BAC的平分線AD交BC于D,DE⊥AB于E,根據(jù)角平分線的性質(zhì),可得CD=ED,AC=AE=BC,繼而可得△DBE的周長=AB.【詳解】∵在△ABC中,∠C=90°,∠BAC的平分線AD交BC于D,DE⊥AB于E,∴CD=ED,∠ADC=∠ADE,∴AE=AC,∵AC=BC,∴BC=AE,∴△DBE的周長是:BD+DE+BE=BD+CD+BE=BC+BE=AE+BE=AB=7cm.故選B.【考點(diǎn)】此題考查了角平分線的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應(yīng)用.6、B【解析】【分析】證明,,根據(jù)全等三角形對應(yīng)邊相等,得到,,由解得,繼而解得,最后由解答.【詳解】解:,,,,,,故選:B.【考點(diǎn)】本題考查全等三角形的判定與性質(zhì)、線段的和差等知識,是重要考點(diǎn),掌握相關(guān)知識是解題關(guān)鍵.7、D【解析】【分析】通過證明得到、,的周長,即可求解.【詳解】解:∵平分∴,又∵∴又∵∴(AAS)∴、,的周長為,故選:D,【考點(diǎn)】此題考查了全等三角形的判定與性質(zhì),解題的關(guān)鍵是掌握全等三角形的判定方法與性質(zhì),以及線段之間的等量關(guān)系.8、B【解析】【分析】由題意可證可得可求EF的長.【詳解】解:在和中,故選:B.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),熟練運(yùn)用全等三角形的判定是本題的關(guān)鍵.9、B【解析】【分析】過點(diǎn)E作EF⊥AD垂足為點(diǎn)F,證明△DEF≌△DEC(AAS);得出CE=EF,DC=DF,∠CED=∠FED,證明Rt△AFE≌Rt△ABE(HL);得出AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,即可得出答案.【詳解】解:如圖,過點(diǎn)E作EF⊥AD,垂足為點(diǎn)F,可得∠DFE=90°,則∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DCE和△DFE中,,∴△DEF≌△DEC(AAS);∴CE=EF,DC=DF,∠CED=∠FED,∵E是BC的中點(diǎn),∴CE=EB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△AFE≌Rt△ABE(HL);∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故結(jié)論(1)正確,則AD=AF+DF=AB+CD,故結(jié)論(3)正確;可得∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE故結(jié)論(4)正確.∵AB≠CD,AE≠DE,(5)錯(cuò)誤,∴△EBA≌△DCE不可能成立,故結(jié)論(2)錯(cuò)誤.綜上所知正確的結(jié)論有3個(gè).故答案為:B.【考點(diǎn)】本題考查全等三角形的判定與性質(zhì)、平行線的判定等內(nèi)容,作出輔助線是解題的關(guān)鍵.10、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實(shí)數(shù)的大小比較,可判斷②;根據(jù)點(diǎn)在數(shù)軸上所對應(yīng)的實(shí)數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質(zhì),可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯(cuò)誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點(diǎn)所表示的數(shù)為,故本小題錯(cuò)誤;④用反證法證明命題“一個(gè)三角形最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角或三個(gè)鈍角”,故本小題錯(cuò)誤;⑤在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn),故本小題正確.故選B【考點(diǎn)】本題主要考查近似數(shù)的精確度定義,實(shí)數(shù)的大小比較,點(diǎn)在數(shù)軸上所對應(yīng)的實(shí)數(shù),反證法的概念,角平分線的性質(zhì),熟練掌握上述知識點(diǎn),是解題的關(guān)鍵.二、填空題1、4【解析】【分析】根據(jù)角的等量代換求出,便可證出,利用全等的性質(zhì)得到,從而求出的長,再通過時(shí)間=路程÷速度列式計(jì)算即可.【詳解】解:根據(jù)題意可得:,,,∵∴又∵∴∴在和中∴∴∴∴時(shí)間=故答案為4【考點(diǎn)】本題主要考查了全等三角形的判定與性質(zhì),利用角的等量代換找出三角形全等的條件是解題的關(guān)鍵.2、【解析】【分析】本題先通過三角形內(nèi)角和求解∠BAC與∠BCA的和,繼而利用鄰補(bǔ)角以及角分線定義求解∠EAC與∠ECA的和,最后利用三角形內(nèi)角和求解此題.【詳解】∵,∴,又∵,,∴.∵三角形的外角和的平分線交于點(diǎn)E,∴,,∴,即.故填:.【考點(diǎn)】本題考查三角形內(nèi)角和公式以及角分線和鄰補(bǔ)角的定義,難度較低,按照對應(yīng)考點(diǎn)定義求解即可.3、4:3【解析】【分析】根據(jù)角平分線的性質(zhì),可得出△ABD的邊AB上的高與△ACD的AC上的高相等,估計(jì)三角形的面積公式,即可得出△ABD與△ACD的面積之比等于對應(yīng)邊之比.【詳解】∵AD是△ABC的角平分線,∴設(shè)△ABD的邊AB上的高與△ACD的AC上的高分別為h1,h2,∴h1=h2,∴△ABD與△ACD的面積之比=AB:AC=4:3,故答案為4:3.4、8cm【解析】【分析】先求,推導(dǎo)出,再求出,,根據(jù)ASA證明,即可得出答案.【詳解】∵,,∴,∴,∴,∵,,∴,在△BFD和△ACD中,∴(ASA),∴cm故答案為:8cm【考點(diǎn)】本題考查了全等三角形的性質(zhì)和判定,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對應(yīng)邊相等.5、100°或100度【解析】【分析】延長AD到M,使得DM=AD,連接BM,證△BDM≌△CDA(SAS),得得到BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,再證△BFM是等腰三角形,求出∠MBF的度數(shù),即可解決問題.【詳解】解:如圖,延長AD到M,使得DM=AD,連接BM,在△BDM和△CDA中,,∴△BDM≌△CDA(SAS),∴BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,∵BF=AC,∴BF=BM,∴∠M=∠BFM=24°,∴∠MBF=180°﹣∠M﹣∠BFM=132°,∵∠EBC=32°,∴∠DBM=∠MBF﹣∠EBC=100°,∴∠C=∠DBM=100°,故答案為:100°.【考點(diǎn)】本題考查全等三角形的判定和性質(zhì)、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.6、∠A=∠D或∠ACB=∠DEF或AC∥DE或BC=FE或BE=FC【解析】【分析】先根據(jù)已知條件推得∠B=∠F,加上AB=DF,要證△ABC≌△DFE,只需要根據(jù)全等三角形的判定方法添加適當(dāng)?shù)慕呛瓦吋纯桑驹斀狻拷猓骸逜B∥DF,∴,添加∠A=∠D,在和中,∴;添加∠ACB=∠DEF,在和中,∴;添加AC∥DE,∵AC∥DE,∴∠ACB=∠DEF,在和中,∴;添加BC=FE,在和中,∴;添加BE=FC,∵BE=FC,∴,∴,在和中,∴,綜上可得,添加∠A=∠D或∠ACB=∠DEF或AC∥DE或BC=FE或BE=FC都可得到△ABC≌△DFE.故答案為:∠A=∠D或∠ACB=∠DEF或AC∥DE或BC=FE或BE=FC【考點(diǎn)】本題考查三角形全等的判定方法,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對應(yīng)相等時(shí),角必須是兩邊的夾角.7、(還可以添加∠A=∠D或∠ACB=∠EFD或AC∥DF,答案不唯一)【解析】【分析】根據(jù)等式的性質(zhì)可得BC=EF,再添加AB=DE,可利用SAS判定△ABC≌△DEF.【詳解】添加的條件是,∵,∴,即.∵在中中,.故答案為:.(還可以添加或或,答案不唯一)【考點(diǎn)】本題主要考查了三角形全等的判定,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對應(yīng)相等時(shí),角必須是兩邊的夾角.8、32【解析】【分析】過點(diǎn)D作DQ⊥AC,由作法可知CP是角平分線,根據(jù)角平分線的性質(zhì)知DB=DQ=3,再由三角形的面積公式計(jì)算即可.【詳解】解:如圖,過點(diǎn)D作DQ⊥AC于點(diǎn)Q,由作圖知CP是∠ACB的平分線,∵∠B=90°,BD=4,∴DB=DQ=4,∵AC=16,∴S△ACD=?AC?DQ=,故答案為32.【考點(diǎn)】本題主要考查作圖-基本作圖,三角形面積,解題的關(guān)鍵是掌握角平分線的尺規(guī)作圖及角平分線的性質(zhì).9、18【解析】【分析】【詳解】解:根據(jù)折疊前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周長是18cm.故答案為8.10、或或【解析】【分析】根據(jù)全等三角形的判定即可求解.【詳解】解:①根據(jù)定理,即,可得;②根據(jù)定理,即,可得;③若,則,則根據(jù)定理,即可得;綜上所述,添加一個(gè)適當(dāng)?shù)臈l件:或或,故答案為:或或.(答案不唯一)【考點(diǎn)】本題考查了全等三角形的判定,熟練掌握全等三角形的判定定理是解題的關(guān)鍵.三、解答題1、詳見解析.【解析】【分析】過點(diǎn)A作BC的垂線,作出∠B的平分線,二者交點(diǎn)即為所求的點(diǎn).【詳解】如圖:∴P點(diǎn)即為所求【考點(diǎn)】本題考查了尺規(guī)作圖,熟練掌握垂線和角平分線的作圖步驟是解答本題的關(guān)鍵.2、(1)見解析;(2)【解析】【分析】(1)根據(jù)“邊角邊”證,得到即可;(2)由(1)得,,再根據(jù)三角形內(nèi)角和證明即可.【詳解】證明:線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)角得到線段,,.,.在與中,.(2)解:,,又,,【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)和三角形內(nèi)角和定理,解題關(guān)鍵是熟練運(yùn)用全等三角形的判定與性質(zhì)進(jìn)行證明.3、(1)見解析;(2)∠ACF的度數(shù)為60°【解析】【分析】(1)由∠ABC=90°可得∠CBF=90°,再由SAS就即可得出△ABE≌△CBF;(2)根據(jù)題意可得∠BAC=∠ACB=45°由∠CAE=30°可得∠BAE=15°,即∠BCF=15°,進(jìn)而可以求出∠ACF的度數(shù).【詳解】(1)證明:∵∠ABC=90°,

∴∠ABC=∠CBF=90°.在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);(2)解:∵△ABE≌△CBF,

∴∠BAE=∠BCF,∵∠ABC=90°,AB=CB,∴∠BCA=∠BAC=45°,∵∠CAE=30°,∴∠BAE=15°,∴∠BCF=15°,∵∠ACF=∠BCF+∠ACB,∴∠ACF=15°+45°=60°.答:∠ACF的度數(shù)為60°.【考點(diǎn)】本題主要考查全等三角形的判定與性質(zhì),解此題的關(guān)鍵在于熟練掌握全等三角形的判定方法.4、詳見解析【解析】【分析】先證明,再利用全等三角形的性質(zhì)得到,然后利用等腰三角形三線合一的性質(zhì),即可證明.【詳解】證明:在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論