考點(diǎn)解析-人教版9年級(jí)數(shù)學(xué)上冊《圓》章節(jié)訓(xùn)練練習(xí)題_第1頁
考點(diǎn)解析-人教版9年級(jí)數(shù)學(xué)上冊《圓》章節(jié)訓(xùn)練練習(xí)題_第2頁
考點(diǎn)解析-人教版9年級(jí)數(shù)學(xué)上冊《圓》章節(jié)訓(xùn)練練習(xí)題_第3頁
考點(diǎn)解析-人教版9年級(jí)數(shù)學(xué)上冊《圓》章節(jié)訓(xùn)練練習(xí)題_第4頁
考點(diǎn)解析-人教版9年級(jí)數(shù)學(xué)上冊《圓》章節(jié)訓(xùn)練練習(xí)題_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版9年級(jí)數(shù)學(xué)上冊《圓》章節(jié)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對(duì)的圓周角的度數(shù)是()A.30° B.60° C.30°或150° D.60°或120°2、一個(gè)等腰直角三角形的內(nèi)切圓與外接圓的半徑之比為(

)A. B. C. D.3、如圖,五邊形是⊙O的內(nèi)接正五邊形,則的度數(shù)為(

)A. B. C. D.4、在平面直角坐標(biāo)系中,⊙O的半徑為2,點(diǎn)A(1,)與⊙O的位置關(guān)系是(

)A.在⊙O上 B.在⊙O內(nèi) C.在⊙O外 D.不能確定5、已知中,,,,點(diǎn)P為邊AB的中點(diǎn),以點(diǎn)C為圓心,長度r為半徑畫圓,使得點(diǎn)A,P在⊙C內(nèi),點(diǎn)B在⊙C外,則半徑r的取值范圍是(

)A. B. C. D.6、如圖,在中,,,,以點(diǎn)為圓心,為半徑的圓與所在直線的位置關(guān)系是(

)A.相交 B.相離 C.相切 D.無法判斷7、一個(gè)點(diǎn)到圓的最大距離為11cm,最小距離為5cm,則圓的半徑為(

)A.16cm或6cm B.3cm或8cm C.3cm D.8cm8、已知圓的半徑為扇形的圓心角為,則扇形的面積為(

)A. B. C. D.9、已知⊙O的半徑為4,點(diǎn)O到直線m的距離為d,若直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè),則d可?。ǎ〢.5 B.4.5 C.4 D.010、如圖所示,一個(gè)半徑為r(r<1)的圖形紙片在邊長為10的正六邊形內(nèi)任意運(yùn)動(dòng),則在該六邊形內(nèi),這個(gè)圓形紙片不能接觸到的部分面積是(

)A. B.C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,A、B、C、D為一個(gè)正多邊形的相鄰四個(gè)頂點(diǎn),O為正多邊形的中心,若∠ADB=12°,則這個(gè)正多邊形的邊數(shù)為____________2、如圖,是的直徑,弦于點(diǎn),且,則的半徑為__________.3、如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E.若AB=10,AE=1,則弦CD的長是_____.4、如圖,在四邊形中,.若,則的內(nèi)切圓面積________(結(jié)果保留).5、如圖,分別以等邊三角形的每個(gè)頂點(diǎn)為圓心、以邊長為半徑,在另兩個(gè)頂點(diǎn)間作一段圓弧,三段圓弧圍成的曲邊三角形稱為勒洛三角形.若等邊三角形的邊長為,則勒洛三角形的周長為_____.6、如圖,一下水管道橫截面為圓形,直徑為100cm,下雨前水面寬為60cm,一場大雨過后,水面寬為80cm,則水位上升______cm.7、如圖,在一邊長為的正六邊形中,分別以點(diǎn)A,D為圓心,長為半徑,作扇形,扇形,則圖中陰影部分的面積為___________.(結(jié)果保留)8、如圖,四邊形ABCD內(nèi)接于⊙O,∠A=125°,則∠C的度數(shù)為______.9、如圖,在中,,,,將繞順時(shí)針旋轉(zhuǎn)后得,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得線段,分別以,為圓心,、長為半徑畫弧和弧,連接,則圖中陰影部分面積是________.10、如圖1是臺(tái)灣某品牌手工蛋卷的外包裝盒,其截面圖如圖2所示,盒子上方是一段圓弧(弧MN).D,E為手提帶的固定點(diǎn),DE與弧MN所在的圓相切,DE=2.手提帶自然下垂時(shí),最低點(diǎn)為C,且呈拋物線形,拋物線與弧MN交于點(diǎn)F,G.若△CDE是等腰直角三角形,且點(diǎn)C,F(xiàn)到盒子底部AB的距離分別為1,,則弧MN所在的圓的半徑為_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,已知點(diǎn)在上,點(diǎn)在外,求作一個(gè)圓,使它經(jīng)過點(diǎn),并且與相切于點(diǎn).(要求寫出作法,不要求證明)2、如圖,,分別切、于點(diǎn)、.切于點(diǎn),交于點(diǎn)與不重合).(1)用直尺和圓規(guī)作出;(保留作圖痕跡,不寫作法)(2)若半徑為1,,求的長.3、如圖,PA、PB分別切⊙O于A、B,連接PO與⊙O相交于C,連接AC、BC,求證:AC=BC.4、如圖,在△ABC中,AB=AC,∠BAC=120°,點(diǎn)D在邊BC上,⊙O經(jīng)過點(diǎn)A和點(diǎn)B且與邊BC相交于點(diǎn)D.(1)判斷AC與⊙O的位置關(guān)系,并說明理由.(2)當(dāng)CD=5時(shí),求⊙O的半徑.5、等邊三角形的邊長為1厘米,面積為0.43平方厘米.以點(diǎn)為圓心,長為半徑在三角形外畫弧,交的延長線于點(diǎn),形成扇形;以點(diǎn)為圓心,長為半徑畫弧,交的延長線于點(diǎn),形成扇形;以點(diǎn)為圓心,長為半徑畫弧,交的延長線于點(diǎn),形成扇形.(1)求所得的圖形的周長;(結(jié)果保留)(2)照此規(guī)律畫至第十個(gè)扇形,求所圍成的圖形的面積以及所畫出的所有弧長的和.(結(jié)果保留)-參考答案-一、單選題1、D【解析】【分析】由圖可知,OA=10,OD=5.根據(jù)特殊角的三角函數(shù)值求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠E的度數(shù)即可.【詳解】解:由圖可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°即弦AB所對(duì)的圓周角的度數(shù)是60°或120°,故選D.【考點(diǎn)】本題考查了圓周角定理、圓內(nèi)接四邊形的對(duì)角互補(bǔ)、解直角三角形的應(yīng)用等,正確畫出圖形,熟練應(yīng)用相關(guān)知識(shí)是解題的關(guān)鍵.2、D【解析】【分析】設(shè)等腰直角三角形的直角邊是1,則其斜邊是.根據(jù)直角三角形的內(nèi)切圓半徑是兩條直角邊的和與斜邊的差的一半,得其內(nèi)切圓半徑是;其外接圓半徑是斜邊的一半,得其外接圓半徑是.所以它們的比為=.【詳解】解:設(shè)等腰直角三角形的直角邊是1,則其斜邊是;∵內(nèi)切圓半徑是,外接圓半徑是,∴所以它們的比為=.故選:D.【考點(diǎn)】本題考查三角形的內(nèi)切圓與外接圓的知識(shí),解題的關(guān)鍵是熟記直角三角形外接圓的半徑和內(nèi)切圓的半徑公式:直角三角形的內(nèi)切圓半徑等于兩條直角邊的和與斜邊的差的一半;直角三角形外接圓的半徑是斜邊的一半.3、D【解析】【分析】先根據(jù)正五邊形的內(nèi)角和求出每個(gè)內(nèi)角,再根據(jù)等邊對(duì)等角得出∠ABE=∠AEB,然后利用三角形內(nèi)角和求出∠ABE=即可.【詳解】解:∵五邊形是⊙O的內(nèi)接正五邊形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故選:D.【考點(diǎn)】本題考查圓內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計(jì)算,掌握?qǐng)A內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計(jì)算是解題關(guān)鍵.4、A【解析】【分析】根據(jù)點(diǎn)A的坐標(biāo),求出OA=2,根據(jù)點(diǎn)與圓的位置關(guān)系即可做出判斷.【詳解】解:∵點(diǎn)A的坐標(biāo)為(1,),∴由勾股定理可得:OA=,又∵⊙O的半徑為2,∴點(diǎn)A在⊙O上.故選:A.【考點(diǎn)】本題考查了點(diǎn)和圓的位置關(guān)系,點(diǎn)和圓的位置關(guān)系是由點(diǎn)到圓心的距離和圓的半徑間的大小關(guān)系確定的:(1)當(dāng)時(shí),點(diǎn)在圓外;(2)當(dāng)時(shí),點(diǎn)在圓上;(3)當(dāng)時(shí),點(diǎn)在圓內(nèi).5、D【解析】【分析】根據(jù)勾股定理,得AB=5,由P為AB的中點(diǎn),得CP=,要使點(diǎn)A,P在⊙C內(nèi),r>3,r<4,從而確定r的取值范圍.【詳解】∵點(diǎn)A在⊙C內(nèi),∴r>3,∵點(diǎn)B在⊙C外,∴r<4,∴,故選:D.【考點(diǎn)】本題考查了點(diǎn)和圓的位置關(guān)系,利用數(shù)形結(jié)合思想是解題的關(guān)鍵.6、A【解析】【分析】過點(diǎn)C作CD⊥AB于點(diǎn)D,由題意易得AB=5,然后可得,進(jìn)而根據(jù)直線與圓的位置關(guān)系可求解.【詳解】解:過點(diǎn)C作CD⊥AB于點(diǎn)D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點(diǎn)為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關(guān)系為相交,故選A.【考點(diǎn)】本題主要考查直線與圓的位置關(guān)系,熟練掌握直線與圓的位置關(guān)系是解題的關(guān)鍵.7、B【解析】【分析】最大距離與最小距離的和是直徑;當(dāng)點(diǎn)P在圓外時(shí),點(diǎn)到圓的最大距離與最小距離的差是直徑,由此得解.【詳解】當(dāng)點(diǎn)P在圓內(nèi)時(shí),最近點(diǎn)的距離為5cm,最遠(yuǎn)點(diǎn)的距離為11cm,則直徑是16cm,因而半徑是8cm;當(dāng)點(diǎn)P在圓外時(shí),最近點(diǎn)的距離為5cm,最遠(yuǎn)點(diǎn)的距離為11cm,則直徑是6cm,因而半徑是3cm;故選B.【考點(diǎn)】本題考查了點(diǎn)與圓的位置關(guān)系,利用線段的和差得出直徑是解題關(guān)鍵,分類討論,以防遺漏.8、B【解析】【分析】扇形面積公式為:利用公式直接計(jì)算即可得到答案.【詳解】解:圓的半徑為扇形的圓心角為,故選:【考點(diǎn)】本題考查的是扇形的面積的計(jì)算,掌握扇形的面積的計(jì)算公式是解題的關(guān)鍵.9、D【解析】【分析】根據(jù)直線和圓的位置關(guān)系判斷方法,可得結(jié)論.【詳解】∵直線m與⊙O公共點(diǎn)的個(gè)數(shù)為2個(gè)∴直線與圓相交∴d<半徑=4故選D.【考點(diǎn)】本題考查了直線與圓的位置關(guān)系,掌握直線和圓的位置關(guān)系判斷方法:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.10、C【解析】【分析】當(dāng)運(yùn)動(dòng)到正六邊形的角上時(shí),圓與兩邊的切點(diǎn)分別為,,連接,,,根據(jù)正六邊形的性質(zhì)可知,故,再由銳角三角函數(shù)的定義用表示出的長,可知圓形紙片不能接觸到的部分的面積,由此可得出結(jié)論.【詳解】解:如圖所示,連接,,,此多邊形是正六邊形,,.,,,圓形紙片不能接觸到的部分的面積.故選:C.【考點(diǎn)】本題考查的是正多邊形和圓,熟知正六邊形的性質(zhì)是解答此題的關(guān)鍵.二、填空題1、15【解析】【分析】連接AO,BO,根據(jù)圓周角定理得到∠AOB=24°,根據(jù)中心角的定義即可求解.【詳解】如圖,連接AO,BO,∴∠AOB=2∠ADB=24°∴這個(gè)正多邊形的邊數(shù)為=15故答案為:15.【考點(diǎn)】此題主要考查正多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理.2、【解析】【分析】根據(jù)垂徑定理得出CE=DE,再由勾股定理得出OD2=DE2+(AE-OA)2,代入求解即可.【詳解】解:∵CD⊥AB,∴CE=DE=CD,∵AE=CD=6,∴CE=DE=3,∵OD=OB=OA,OE=AE-OA,在Rt△ODE中,由勾股定理可得:OD2=DE2+(AE-OA)2,即:OD2=32+(6-OD)2,解得:OD=,∴⊙O的半徑為:,故答案為:.【考點(diǎn)】本題考查了垂徑定理、勾股定理等知識(shí);熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.3、6【解析】【分析】連接OC,根據(jù)勾股定理求出CE,根據(jù)垂徑定理計(jì)算即可.【詳解】連接OC,∵AB是⊙O的直徑,弦CD⊥AB,∴CD=2CE,∠OEC=90°,∵AB=10,AE=1,∴OC=5,OE=5﹣1=4,在Rt△COE中,CE==3,∴CD=2CE=6,故答案為6.【考點(diǎn)】本題考查了垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧是解題的關(guān)鍵.4、【解析】【分析】根據(jù),得出為的垂直平分線;利用等腰三角形的三線合一可得,進(jìn)而得出為等邊三角形;利用,得出為直角三角形,解直角三角形,求得等邊三角形的邊長,再利用內(nèi)心的性質(zhì)求出圓的半徑,圓的面積可求.【詳解】解:如圖,設(shè)與交于點(diǎn)F,的內(nèi)心為O,連接.∵,∴是線段的垂直平分線.∴.∵,∴.∴.∴為等邊三角形.∴.∵,∴.∵,∴∴.∴.∵,∴.∵O為的內(nèi)心,∴.∴.∴的內(nèi)切圓面積為.故答案為.【考點(diǎn)】本題考查了垂直平分線的判定、三角形內(nèi)切圓、等邊三角形判定與性質(zhì)、解直角三角形,解題關(guān)鍵是根據(jù)垂直平分線的判定確定為等邊三角形,根據(jù)解直角三角形求出內(nèi)切圓半徑.5、πa【解析】【分析】首先根據(jù)等邊三角形的性質(zhì)得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧長公式求出的長=的長=的長=,那么勒洛三角形的周長為【詳解】解:如圖.∵△ABC是等邊三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的長=的長=的長=,∴勒洛三角形的周長為故答案為:πa.【考點(diǎn)】本題考查了弧長公式,解題的關(guān)鍵是掌握(弧長為l,圓心角度數(shù)為n,圓的半徑為R),也考查了等邊三角形的性質(zhì).6、10或70【解析】【分析】分水位在圓心下以及圓心上兩種情況,畫出符合題意的圖形進(jìn)行求解即可得.【詳解】如圖,作半徑于C,連接OB,由垂徑定理得:=AB=×60=30cm,在中,,當(dāng)水位上升到圓心以下時(shí)

水面寬80cm時(shí),則,水面上升的高度為:;當(dāng)水位上升到圓心以上時(shí),水面上升的高度為:,綜上可得,水面上升的高度為30cm或70cm,故答案為:10或70.【考點(diǎn)】本題考查了垂徑定理的應(yīng)用,掌握垂徑定理、靈活運(yùn)用分類討論的思想是解題的關(guān)鍵.7、【解析】【分析】先利用正多邊形內(nèi)角和公式求得每個(gè)內(nèi)角,再利用扇形面積公式求出扇形ABF、扇形DCE的面積,即可得出結(jié)果.【詳解】由正多邊形每個(gè)內(nèi)角公式可得該正六邊形的每一個(gè)內(nèi)角;∵,;則陰影部分面積為:.【考點(diǎn)】本題考查了正多邊形和圓、扇形面積計(jì)算等知識(shí);掌握正多邊形內(nèi)角的計(jì)算公式和扇形面積公式是解題的關(guān)鍵.8、55°##55度【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠A+∠C=180°,再求出答案即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=180°-125°=55°,故答案為:55°.【考點(diǎn)】本題考查了圓內(nèi)接四邊形的性質(zhì)和圓周角定理,能熟記圓內(nèi)接四邊形的對(duì)角互補(bǔ)是解此題的關(guān)鍵.9、【解析】【分析】作DH⊥AE于H,根據(jù)勾股定理求出AB,根據(jù)陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積計(jì)算即可得到答案.【詳解】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴,由旋轉(zhuǎn)得△EOF≌△BOA,∴∠OAB=∠EFO,∵∠FEO+∠EFO=∠FEO+∠HED=90°,∴∠EFO=∠HED,∴∠HED=∠OAB,∵∠DHE=∠AOB=90°,,∴△DHE≌△BOA(AAS),∴DH=OB=1,,∴陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積,故答案為:.【考點(diǎn)】本題考查的是扇形面積的計(jì)算、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì),掌握扇形的面積公式和旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.10、.【解析】【分析】以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)拋物線的表達(dá)式為y=ax2+1,因?yàn)椤鰿DE是等腰直角三角形,DE=2,得點(diǎn)E的坐標(biāo)為(1,2),可得拋物線的表達(dá)式為y=x2+1,把當(dāng)y代入拋物線表達(dá)式,求得MH的長,再在Rt△FHM中,用勾股定理建立方程,求得所在的圓的半徑.【詳解】如圖,以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)所在的圓的圓心為P,半徑為r,過F作y軸的垂線交y軸于H,設(shè)拋物線的表達(dá)式為y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴點(diǎn)E的坐標(biāo)為(1,2),代入拋物線的表達(dá)式,得:2=a+1,a=1,∴拋物線的表達(dá)式為y=x2+1,當(dāng)y時(shí),即,解得:,∴FH.∵∠FHM=90°,DE與所在的圓相切,∴,解得:,∴所在的圓的半徑為.故答案為.【考點(diǎn)】本題考查了圓的切線的性質(zhì),待定系數(shù)法求拋物線的表達(dá)式,垂徑定理.解題的關(guān)鍵是建立合適的平面直角坐標(biāo)系得出拋物線的表達(dá)式.三、解答題1、見解析【解析】【分析】先確定圓心,再確定圓的半徑,畫圓即可.【詳解】解:如圖,①連接、,②作線段的垂直平分線交的延長線于一點(diǎn),交點(diǎn)即為,③以為圓心,或的長度為半徑作圓,④即為所求.【考點(diǎn)】本題考查了確定圓的條件和相切兩圓的性質(zhì),作圖是難點(diǎn),注:確定圓,即確定圓心和半徑.2、(1)見解析;(2)【解析】【分析】(1)以A為圓心,為半徑畫弧交于,作直線交于點(diǎn),直線即為所求.(2)設(shè),利用勾股定理構(gòu)建方程即可解決問題.【詳解】解:(1)如圖,直線即為所求.(2)連接,.是的內(nèi)切圓,,,是切點(diǎn),,四邊形是矩形,,四邊形是正方形,,,設(shè),在中,,,,.【考點(diǎn)】本題考查作圖復(fù)雜作圖,切線的性質(zhì),勾股定理等知識(shí),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考??碱}型.3、證明見解析【解析】【詳解】分析:連接OA、OB,根據(jù)切線的性質(zhì)得出△OAP和△OBP全等,從而得出∠APC=∠BPC,從而得出△APC和△BPC全等,從而得出答案.詳解:連結(jié)OA,OB.∵PA,PB分別切⊙O于點(diǎn)A,B,∴PA=PB,又∵OA=OB,PO=PO,∴△OAP≌△OBP(SSS),∴∠APC=∠BPC,又∵PC=PC,∴△APC≌△BPC(SAS).

∴AC=BC.點(diǎn)睛:本題主要考查的是切線的性質(zhì)以及三角形全等的證明與性質(zhì),屬于基礎(chǔ)題型.根據(jù)切線的性質(zhì)得出PA=PB是解題的關(guān)鍵.4、(1)AC與⊙O相切,理由見解析(2)⊙O的半徑為5【解析】【分析】(1)連接AO,根據(jù)等腰三角形的性質(zhì)得到∠B=∠C=30°,∠BAO=∠B=30°,求得∠AOC=60°,根據(jù)三角形的內(nèi)角和得到∠OAC=180°-60°-30°=90°,于是得到AC是⊙O的切線;(2)連接AD,推出△AOD是等邊三角形,得到A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論