版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
3.3一元一次不等式及其解法講解目錄講解目錄TOC\o"13"\h\u【知識點1】由實際問題抽象出一元一次不等式 1【知識點2】一元一次不等式的整數(shù)解 2【知識點3】一元一次不等式的定義 2【知識點4】一元一次不等式的應(yīng)用 2【知識點5】解一元一次不等式 3【題型1】在數(shù)軸上表示一元一次不等式的解集 4【題型2】根據(jù)一元一次不等式概念求字母的值 5【題型3】一元一次不等式的整數(shù)解 5【題型4】根據(jù)在數(shù)軸上表示的解寫出不等式的解集 5【題型5】一元一次不等式與新定義型問題 6【題型6】根據(jù)一元一次不等式的解求字母的取值范圍或值 7【題型7】根據(jù)“五步法”解一元一次不等式 7【題型8】根據(jù)實際問題抽象出一元一次不等式 8【題型9】判斷是否為一元一次不等式 9【題型10】一元一次不等式的解 10【題型11】一元一次不等式與方案問題 10【題型12】用一元一次不等式解決實際問題 12知識講解知識講解【知識點1】由實際問題抽象出一元一次不等式用不等式表示不等關(guān)系時,要抓住題目中的關(guān)鍵詞,如“大于(小于)、不超過(不低于)、是正數(shù)(負數(shù))”“至少”、“最多”等等,正確選擇不等號.因此建立不等式要善于從“關(guān)鍵詞”中挖掘其內(nèi)涵,不同的詞里蘊含這不同的不等關(guān)系.1.(2025春?橋西區(qū)期末)語句“a的14與b的3倍的差的平方是一個非負數(shù)”A.(B.1C.3(D.12.(2025春?泗陽縣期末)某動車組列車速度v(km/h)最高可達400km/h,用不等式表示其數(shù)量關(guān)系是()A.v>400B.v≥400C.v≤400D.v<400【知識點2】一元一次不等式的整數(shù)解解決此類問題的關(guān)鍵在于正確解得不等式的解集,然后再根據(jù)題目中對于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進而求得不等式的整數(shù)解.可以借助數(shù)軸進行數(shù)形結(jié)合,得到需要的值,進而非常容易的解決問題.1.(2022春?米東區(qū)校級期末)不等式3x+6≥4x的正整數(shù)解有()A.1個B.2個C.3個D.4個2.(2023春?天峨縣期末)已知不等式2xa≤0的正整數(shù)解恰好是1,2,3,4,5,那么a的取值范圍是()A.a(chǎn)>10B.10≤a≤12C.10<a≤12D.10≤a<123.(2024?金鳳區(qū)校級三模)不等式2x3a≤2a的正整數(shù)解為1和2,則a的取值范圍是()A.4≤a≤6B.4<a<6C.4<a≤6D.4≤a<6【知識點3】一元一次不等式的定義(1)一元一次不等式的定義:含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.(2)概念解析一方面:它與一元一次方程相似,即都含一個未知數(shù)且未知項的次數(shù)都是一次,但也有不同,即它是用不等號連接,而一元一次方程是用等號連接.另一方面:它與不等式有區(qū)別,不等式中可含、可不含未知數(shù),而一元一次不等式必含未知數(shù).但兩者也有聯(lián)系,即一元一次不等是屬于不等式.1.(2024春?南崗區(qū)校級月考)下列各式中,是一元一次不等式的是()A.5+4x>8B.2x1C.2≤5D.12.(2025春?肥西縣期中)下列各式中,是一元一次不等式的是()A.x3B.x1=2C.x+y>1D.x3>5【知識點4】一元一次不等式的應(yīng)用(1)由實際問題中的不等關(guān)系列出不等式,建立解決問題的數(shù)學模型,通過解不等式可以得到實際問題的答案.(2)列不等式解應(yīng)用題需要以“至少”、“最多”、“不超過”、“不低于”等詞來體現(xiàn)問題中的不等關(guān)系.因此,建立不等式要善于從“關(guān)鍵詞”中挖掘其內(nèi)涵.(3)列一元一次不等式解決實際問題的方法和步驟:①弄清題中數(shù)量關(guān)系,用字母表示未知數(shù).②根據(jù)題中的不等關(guān)系列出不等式.③解不等式,求出解集.④寫出符合題意的解.1.(2024春?長汀縣期末)某種商品的進價為200元,出售標價為300元,后來由于該商品積壓,商店準備打折銷售,但要保證利潤率不低于20%,則最多可打()A.6折B.7折C.8折D.9折2.(2023春?橫縣期末)某工人計劃在15天內(nèi)加工408個零件,最初三天中每天加工24個零件,要想在規(guī)定時間內(nèi)超額完成任務(wù),若設(shè)從第4天開始每天至少加工x個零件,依題意可列出式子為()A.24×3+(153)x=408B.24×3+(153)x>408C.24×3+(153)x≥408D.24×3+(153)x<4083.(2023春?城關(guān)區(qū)校級期中)靜怡準備用70元在文具店買A,B兩種筆記本共7本,A種筆記本每本10元,B種筆記本每本8元,如果至少要買4本A種筆記本,請問靜怡購買的方案有()A.2種B.3種C.4種D.5種【知識點5】解一元一次不等式根據(jù)不等式的性質(zhì)解一元一次不等式基本操作方法與解一元一次方程基本相同,都有如下步驟:①去分母;②去括號;③移項;④合并同類項;⑤化系數(shù)為1.以上步驟中,只有①去分母和⑤化系數(shù)為1可能用到性質(zhì)3,即可能變不等號方向,其他都不會改變不等號方向.注意:符號“≥”和“≤”分別比“>”和“<”各多了一層相等的含義,它們是不等號與等號合寫形式.1.(2025春?肇慶期末)不等式4x7≥5的解集是()A.x≤3B.x≥3C.x≥3D.x≤32.(2025春?商河縣期末)不等式3x+1≥2x+2的解集在數(shù)軸上表示為()A.B.C.D.3.(2025春?閔行區(qū)校級月考)以下關(guān)于不等式x1<0的判斷錯誤的是()A.0是這個不等式的解B.x>1是這個不等式的解集C.大于1的數(shù)都是這個不等式的解D.小于1的數(shù)都不是這個不等式的解.題型專練題型專練【題型1】在數(shù)軸上表示一元一次不等式的解集【典型例題】不等式﹣1﹣3x≤2的解集在數(shù)軸上表示正確的是()A.B.C.D.【舉一反三1】不等式2x﹣1<﹣3的解集在數(shù)軸上表示正確的是()A.B.C.D.【舉一反三2】不等式﹣1﹣3x≤2的解集在數(shù)軸上表示正確的是()A.B.C.D.【舉一反三3】不等式x﹣1≤2的解集表示在數(shù)軸上正確的是()A.B.C.D.【舉一反三4】解不等式,并把解在數(shù)軸上表示出來.【舉一反三5】解不等式,并把它的解集在數(shù)軸上表示出來.【題型2】根據(jù)一元一次不等式概念求字母的值【典型例題】已知(a﹣1)x|a|+m>0是關(guān)于x的一元一次不等式,則a的值為.【舉一反三1】已知(a﹣4)x|3﹣a|+1>0是關(guān)于x的一元一次不等式,則a=
.【舉一反三2】已知(k+3)x|k|﹣2+5<k﹣4是關(guān)于x的一元一次不等式,求k的值以及不等式的解集.【舉一反三3】已知(b+2)xb+1<﹣3是關(guān)于x的一元一次不等式,試求b的值,并解這個一元一次不等式.【題型3】一元一次不等式的整數(shù)解【典型例題】若代數(shù)式2x+1的值不大于3x﹣4的值,則x的最小整數(shù)值是()A.5B.6C.7D.8【舉一反三1】已知不等式2x+a<x+4的正整數(shù)解有2個,則a的取值范圍是()A.1<a<2B.1<a≤2C.1≤a≤2D.1≤a<2【舉一反三2】不等式5﹣x>2(x﹣1)的正整數(shù)解為
.【舉一反三3】求不等式的非負整數(shù)解.【舉一反三4】解不等式10﹣4(x﹣3)≥2(x﹣1),在數(shù)軸上表示它的解集,并寫出它的非負整數(shù)解.【題型4】根據(jù)在數(shù)軸上表示的解寫出不等式的解集【典型例題】一個不等式的解在數(shù)軸上如圖所示,則這個不等式為()A.3﹣5x<3x﹣5B.6x+4>﹣2C.﹣7x+6≥7+3xD.﹣3x+4≥3﹣4x【舉一反三1】一個不等式的解集在數(shù)軸上表示如圖,則這個不等式可以是()A.x+2≥0B.x﹣2≤0C.2x≥4D.2﹣x≤0【舉一反三2】已知一個不等式的解集在數(shù)軸上如圖所示,則這個不等式是()A.2x+3≥﹣5B.3﹣4x>10C.0D.1﹣3x<2x+8【舉一反三3】若一個不等式的解集在數(shù)軸上表示如圖,則這個不等式應(yīng)是下列中的()A.x﹣1<0B.x﹣1≤0C.x﹣1>0D.x﹣1≥0【題型5】一元一次不等式與新定義型問題【典型例題】我們定義一個關(guān)于實數(shù)a,b的新運算,規(guī)定:a*b=﹣4a﹣3b.例如:5*6=﹣4×5﹣3×6,若m滿足m*(﹣2)<0,則m的取值范圍是()A.B.C.D.【舉一反三1】在R上定義運算:a⊕b=(a+1)b,當1≤x≤2時,存在x使不等式2⊕mx<4成立,則實數(shù)m的取值范圍為()A.B.C.m≤0D.【舉一反三2】定義新運算“⊕”如下:當a>b時,a⊕b=ab+b;當a<b時,a⊕b=ab﹣b,若3⊕(x+2)>0,則x的取值范圍是()A.﹣1<x<1或x<﹣2B.x<﹣2或1<x<2C.﹣2<x<1或x>1D.x<﹣2或x>2【舉一反三3】定義新運算:對于任意實數(shù)a,b均有a※b=a(a﹣b)+1,則不等式4※x≥1的解集為
.【舉一反三4】定義新運算“?”,規(guī)定:a?b=a﹣2b.若關(guān)于x的不等式x?m>3的解集為x>﹣1,則m=
.【舉一反三5】定義:對于任意實數(shù)a,b,關(guān)于☆的一種運算如下a☆b=b﹣2a,例如5☆3﹣10=﹣7,(﹣3)☆5=5﹣(﹣6)=11.(1)若2☆x<5,求x的取值范圍;(2)已知關(guān)于x的方程2(2x﹣1)=x+7的解滿足m☆x<5,求m的取值范圍.【舉一反三6】定義一種新運算“a※b”:當a≥b時,a※b=2a+b;當a<b時,a※b=2b﹣a.例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※2=2×2﹣(﹣6)=10.(1)填空:2※(﹣3)=
;(2)若x是一個負數(shù),且滿足(2x﹣3)※(1﹣3x)<7,求x的取值范圍.【題型6】根據(jù)一元一次不等式的解求字母的取值范圍或值【典型例題】已知關(guān)于x的不等式(a﹣1)x>2的解集為,則a的取值范圍是()A.a<1B.a>1C.a<0D.a>0【舉一反三1】已知關(guān)于x的不等式2x﹣a>﹣3的解在數(shù)軸上表示如圖,則a的值為()A.2B.﹣1C.0D.1【舉一反三2】已知關(guān)于x的不等式(a﹣5)x<a﹣5的解集為x>1,則a的取值范圍是()A.a<0B.a<5C.a<﹣5D.a>5【舉一反三3】已知關(guān)于x的不等式(a﹣3)x>(a﹣3)的解是x<1.則a的取值范圍是
.【舉一反三4】已知關(guān)于x的不等式2(a+1)x>2x+(4a﹣3).(1)當a=﹣5時,求這個不等式的解集.(2)如果該不等式的解集為x,求a的取值范圍.(3)如果x=﹣2是該不等式的一個解,求a的取值范圍.【舉一反三5】已知關(guān)于x的不等式a(x﹣1)>x+1﹣2a的解集是x<﹣1,求a的取值范圍.【題型7】根據(jù)“五步法”解一元一次不等式【典型例題】不等式x+2>﹣1的解集為()A.x>﹣3B.x>1C.x<﹣3D.x<1【舉一反三1】不等式﹣4x﹣1≥﹣2x+1的解集是()A.x>﹣1B.x≥﹣1C.x<﹣1D.x≤﹣1【舉一反三2】若,則()A.x>﹣3B.x<﹣3C.x>1D.【舉一反三3】解不等式1+2(x﹣1)≤3,則x的解集是
.【舉一反三4】不等式的解集是
.【舉一反三5】解不等式:(1)7x﹣1≤9x+5(2)【舉一反三6】解不等式:.【題型8】根據(jù)實際問題抽象出一元一次不等式【典型例題】北京2022冬奧會吉祥物“冰墩墩”和“雪容融”受到大家的喜愛,某網(wǎng)店出售這兩種吉祥物禮品,售價如圖所示.小明媽媽一共買10件禮品,總共花費不超過900元,如果設(shè)購買冰墩墩禮品x件,則能夠得到的不等式是()A.100x+80(10﹣x)>900B.100x+80(10﹣x)<900C.100x+80(10﹣x)≥900D.100x+80(10﹣x)≤900【舉一反三1】小霞原有存款52元,小明原有存款70元.從這個月開始,小霞每月存15元零花錢,小明每月存12元零花錢,設(shè)經(jīng)過n個月后小霞的存款超過小明,可列不等式為()A.52+15n>70+12nB.52+15n<70+12nC.52+12n>70+15nD.52+12n<70+15n【舉一反三2】學校準備購進兩種型號的節(jié)能燈共50只,且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,設(shè)A型節(jié)能燈共購進x只,請你列出相應(yīng)不等式
.【舉一反三3】一次知識競賽共有10道題,每一題答對得10分,答錯或不答都扣5分,娜娜得分要不少于60分,設(shè)她答對了n道題.則根據(jù)題意可列不等式:
.【題型9】判斷是否為一元一次不等式【典型例題】下列是一元一次不等式的是()A.2x>1B.x﹣2<y﹣2C.2<3D.x2<9【舉一反三1】下列不等式中,是一元一次不等式的是()A.x>5﹣yB.2x﹣3<0C.4>2D.x<x2【舉一反三2】下列是一元一次不等式的有()x>0,1,2x<﹣2+x,x+y>﹣3,x=﹣1,x2>3,.A.1個B.2個C.3個D.4個【舉一反三3】下列各式是一元一次不等式的有
(填序號).①﹣2x>5;②3x﹣4y≥0;③;④.【舉一反三4】下列各式中,哪些是一元一次不等式?(1)﹣3>﹣5;(2)x>1;(3)2x+y≥6;(4)2﹣x<3x+5;(5)3x+1=0;(6);(7)2x2+5>7;(8)2a﹣7≤15;(9)1.【舉一反三5】判斷下列不等式是否為一元一次不等式:(1)2x+y?0;(2)3≤1;(3)(2x+1)>n(x﹣2);(4)1﹣3x<4+7x.【題型10】一元一次不等式的解【典型例題】如果x=1.6是某不等式的解,那么該不等式可以是()A.x>3B.x>2C.x<1D.x<2【舉一反三1】下列各數(shù)中,是不等式x>2的解的是()A.﹣2B.2C.1D.3.5【舉一反三2】構(gòu)造一個一元一次不等式,使它的解集是,如
.【舉一反三3】不等式|x|<1的解集是
.【舉一反三4】下列各數(shù)中,是不等式x+1<4解的數(shù)有哪些?哪些不是不等式的解?8、7、5.5、4、2、1、0、2.5、﹣6.【舉一反三5】判斷下列說法是否正確,為什么?(1)x=﹣1是不等式2x<6的解;(2)x=1不是不等式x﹣2>0的解;(3)因為x=1是不等式x﹣5<0的一個解,所以該不等式的解為x=1.【題型11】一元一次不等式與方案問題【典型例題】聯(lián)通公司推出兩種手機收費方案.方案一:月租費36元,本地通話話費0.1元/分;方案二:不收月租費,本地通話費為0.6元/分.設(shè)小明的爸爸一個月通話時間為x分鐘.小明爸爸一個月通話時間為多少時,選擇方案一比方案二優(yōu)惠?()A.60分鐘B.70分鐘C.72分鐘D.80分鐘【舉一反三1】小明欲購買A,B兩種型號的筆記本共10本(不可購買一種),要求其總價錢不超過60元,已知A型號的單價是5元,B種型號的單價是7元,則購買方案有()A.3種B.4種C.5種D.6種【舉一反三2】某種毛巾的原零售價為每條6元,凡一次性購買兩條以上(含兩條),商家推出兩種優(yōu)惠方案:(1)兩條按原價,其余按七折優(yōu)惠;(2)全部按八折優(yōu)惠.若在購買相同數(shù)量的毛巾的情況下,要使方案(1)比方案(2)合算,則最少要購買毛巾
條.【舉一反三3】某電信公司提供的移動通信服務(wù)的收費標準有兩種方案,如下表:(1)當通話時間為100分鐘時,方案A的費用為
元;(2)當通話時間滿足條件
分鐘時,方案B比方案A更優(yōu)惠.【舉一反三4】某公司有甲、乙兩種型號的客車共20輛,它們的載客量、每天的租金如表所示.已知在這20輛客車都坐滿的情況下,共載客720人.(1)求甲、乙兩種型號的客車各有多少輛?(2)某中學計劃租用甲、乙兩種型號的客車共10輛,接送七年級的師生到基地參加暑期社會實踐活動,已知該中學租車的總費用不超過5600元.①至少要租用多少輛甲型客車?②若七年級的師生共有370人,請寫出所有可能的租車方案,并確定最省錢的租車方案.【舉一反三5】為了提高學生學習英語的興趣,檢測學生詞匯掌握情況,萬州區(qū)某中學舉辦了“英語詞匯競賽活動”,學校英語組準備給每個獲獎學生頒發(fā)一種售價為30元/個的獎品.由于需要的獎品數(shù)量較多,商家給出兩種優(yōu)惠方案,方案一:所有獎品按售價打8折;方案二:免費贈送10個獎品,其余獎品按售價打9折.(1)負責購買獎品的老師發(fā)現(xiàn),按方案一購買獎品比按方案二購買獎品可以節(jié)約30元錢,求需要購買多少個獎品?(2)購買的獎品數(shù)量在什么范圍時,按方案一購買比按方案二購買要劃算?【題型12】用一元一次不等式解決實際問題【典型例題】某商店為了促銷一種定價為4元的商品,采取下列方式優(yōu)惠銷售:若一次性購買不超過5件,按原價付款;若一次性購買5件以上,超過部分按原價八折付款.如果小穎有44元錢,那么她最多可以購買該商品()A.10件B.11件C.12件D.13件【舉一反三1】某批電子產(chǎn)品的進價為200元/件,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026山東事業(yè)單位統(tǒng)考濟南平陰縣招聘初級綜合類崗位13人備考考試試題附答案解析
- 生產(chǎn)固定資產(chǎn)管理制度
- 生產(chǎn)關(guān)系政治經(jīng)制度
- 茶廠生產(chǎn)過程控制制度
- 裝載機安全生產(chǎn)制度
- 安全生產(chǎn)協(xié)助人制度
- 煤礦井下文明生產(chǎn)制度
- 局安全生產(chǎn)通報制度
- 電力班組生產(chǎn)培訓(xùn)制度
- 生產(chǎn)進度管控制度
- 體檢中心工作總結(jié)10
- 股權(quán)轉(zhuǎn)讓法律意見書撰寫范本模板
- 修建羊舍合同(標準版)
- 精神科常見藥物不良反應(yīng)及處理
- 執(zhí)行信息屏蔽申請書
- SA8000-2026社會責任管理體系新版的主要變化及標準內(nèi)容培訓(xùn)教材
- 2025年版評審準則考核試題(附答案)
- DB11∕T 2375-2024 城市運行監(jiān)測指標體系
- 貴陽棄養(yǎng)寵物管理辦法
- 2025年三類醫(yī)療器械產(chǎn)品考試題目(附答案)
- 工廠機械安全操作規(guī)程大全
評論
0/150
提交評論