四川省遂寧高級實驗學校2026屆九年級數(shù)學第一學期期末經(jīng)典模擬試題含解析_第1頁
四川省遂寧高級實驗學校2026屆九年級數(shù)學第一學期期末經(jīng)典模擬試題含解析_第2頁
四川省遂寧高級實驗學校2026屆九年級數(shù)學第一學期期末經(jīng)典模擬試題含解析_第3頁
四川省遂寧高級實驗學校2026屆九年級數(shù)學第一學期期末經(jīng)典模擬試題含解析_第4頁
四川省遂寧高級實驗學校2026屆九年級數(shù)學第一學期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省遂寧高級實驗學校2026屆九年級數(shù)學第一學期期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如果將拋物線y=﹣x2﹣2向右平移3個單位,那么所得到的新拋物線的表達式是()A.y=﹣x2﹣5B.y=﹣x2+1C.y=﹣(x﹣3)2﹣2D.y=﹣(x+3)2﹣22.若,那么的值是()A. B. C. D.3.下列是一元二次方程的是()A.2x+1=0 B.x2+2x+3=0 C.y2+x=1 D.=14.拋物線y=(x+2)2-3的對稱軸是(

)A.直線x=2 B.直線x=-2 C.直線x=-3 D.直線x=35.下列對于二次函數(shù)y=﹣x2+x圖象的描述中,正確的是()A.開口向上 B.對稱軸是y軸C.有最低點 D.在對稱軸右側的部分從左往右是下降的6.如圖,在矩形COED中,點D的坐標是(1,3),則CE的長是()A.3 B. C. D.47.下列四幅圖案,在設計中用到了中心對稱的圖形是()A. B. C. D.8.如圖,在△ABC中,點D,E,F(xiàn)分別是邊AB,AC,BC上的點,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于()A.5∶8 B.3∶8 C.3∶5 D.2∶59.如圖,在△ABC與△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,連接BD、CE,若AC︰BC=3︰4,則BD︰CE為()A.5︰3 B.4︰3 C.︰2 D.2︰10.如圖,AB是⊙O的直徑,PD切⊙O于點C,交AB的延長線于D,且AO=CD,則∠PCA=()A.30° B.60° C.67.5° D.45°二、填空題(每小題3分,共24分)11.點關于軸的對稱點的坐標是__________.12.已知x=﹣1是方程x2﹣2mx﹣3=0的一個根,則該方程的另一個根為_____.13.如圖,約定:上方相鄰兩數(shù)之和等于這兩數(shù)下方箭頭共同指向的數(shù).當y=﹣1時,n=_____.14.比較sin30°、sin45°的大小,并用“<”連接為_____.15.已知△ABC中,∠BAC=90°,用尺規(guī)過點A作一條直線,使其將△ABC分成兩個相似的三角形,其作法不正確的是_______.(填序號)16.若點(p,2)與(﹣3,q)關于原點對稱,則p+q=__.17.A、B為⊙O上兩點,C為⊙O上一點(與A、B不重合),若∠ACB=100°,則∠AOB的度數(shù)為____°.18.已知扇形的面積為3πcm2,半徑為3cm,則此扇形的圓心角為_____度.三、解答題(共66分)19.(10分)深圳國際馬拉松賽事設有A“全程馬拉松”,B“半程馬拉松”,C“嘉年華馬拉松”三個項目,小智和小慧參加了該賽事的志愿者服務工作,組委會將志愿者隨機分配到三個項目組.(1)小智被分配到A“全程馬拉松”項目組的概率為.(2)用樹狀圖或列表法求小智和小慧被分到同一個項目標組進行志愿服務的概率.20.(6分)如圖,平面直角坐標中,把矩形OABC沿對角線OB所在的直線折疊,點A落在點D處,OD與BC交于點E.OA、OC的長是關于x的一元二次方程x2﹣9x+18=0的兩個根(OA>OC).(1)求A、C的坐標.(2)直接寫出點E的坐標,并求出過點A、E的直線函數(shù)關系式.(3)點F是x軸上一點,在坐標平面內是否存在點P,使以點O、B、P、F為頂點的四邊形為菱形?若存在請直接寫出P點坐標;若不存在,請說明理由.21.(6分)如圖,在平面直角坐標系中,∠ACB=90°,OC=2BO,AC=6,點B的坐標為(1,0),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.(1)求點A的坐標;(2)求拋物線的解析式;(3)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE=DE.①求點P的坐標;②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標;若不存在,請說明理由.22.(8分)如圖,的頂點坐標分別為,,.(1)畫出關于點的中心對稱圖形;(2)畫出繞點逆時針旋轉的;直接寫出點的坐標為_____;(3)求在旋轉到的過程中,點所經(jīng)過的路徑長.23.(8分)新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經(jīng)銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關系:y=﹣2x+320(80≤x≤160).設這種電子鞭炮每天的銷售利潤為w元.(1)求w與x之間的函數(shù)關系式;(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想賣得快.那么銷售單價應定為多少元?24.(8分)某公司研制出新產(chǎn)品,該產(chǎn)品的成本為每件2400元.在試銷期間,購買不超過10件時,每件銷售價為3000元;購買超過10件時,每多購買一件,所購產(chǎn)品的銷售單價均降低5元,但最低銷售單價為2600元。請解決下列問題:(1)直接寫出:購買這種產(chǎn)品________件時,銷售單價恰好為2600元;(2)設購買這種產(chǎn)品x件(其中x>10,且x為整數(shù)),該公司所獲利潤為y元,求y與x之間的函數(shù)表達式;(3)該公司的銷售人員發(fā)現(xiàn):當購買產(chǎn)品的件數(shù)超過10件時,會出現(xiàn)隨著數(shù)量的增多,公司所獲利潤反而減少這一情況.為使購買數(shù)量越多,公司所獲利潤越大,公司應將最低銷售單價調整為多少元?(其它銷售條件不變)25.(10分)(1)解方程:x2+4x-1=0(2)已知α為銳角,若,求的度數(shù).26.(10分)已知關于的一元二次方程.(1)若方程有實數(shù)根,求實數(shù)的取值范圍;(2)若方程的兩個實根為,且滿足,求實數(shù)的值.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】先求出原拋物線的頂點坐標,再根據(jù)向右平移橫坐標加求出平移后的拋物線的頂點坐標,然后利用頂點式解析式寫出即可.【詳解】y=?x2?2的頂點坐標為(0,?2),∵向右平移3個單位,∴平移后的拋物線的頂點坐標為(3,?2),∴所得到的新拋物線的表達式是y=?(x?3)2?2.故選:C.考查二次函數(shù)圖象的平移,掌握二次函數(shù)圖象平移的規(guī)律是解題的關鍵.2、A【分析】根據(jù),可設a=2k,則b=3k,代入所求的式子即可求解.【詳解】∵,∴設a=2k,則b=3k,則原式==.故選:A.本題考查了比例的性質,根據(jù),正確設出未知數(shù)是本題的關鍵.3、B【分析】根據(jù)一元二次方程的定義,即只含一個未知數(shù),且未知數(shù)的最高次數(shù)為1的整式方程,對各選項分析判斷后利用排除法求解.【詳解】解:A、方程1x+1=0中未知數(shù)的最高次數(shù)不是1,是一元一次方程,故不是一元二次方程;B、方程x1+1x+3=0只含一個未知數(shù),且未知數(shù)的最高次數(shù)為1的整式方程,故是一元二次方程;C、方程y1+x=1含有兩個未知數(shù),是二元二次方程,故不是一元二次方程;D、方程=1不是整式方程,是分式方程,故不是一元二次方程.故選:B.本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是1.是否符合定義的條件是作出判斷的關鍵.4、B【解析】試題解析:在拋物線頂點式方程中,拋物線的對稱軸方程為x=h,∴拋物線的對稱軸是直線x=-2,故選B.5、D【分析】根據(jù)題目中的函數(shù)解析式和二次函數(shù)的性質,可以判斷各個選項中的結論是否正確,從而可以解答本題.【詳解】解:∵二次函數(shù)y=﹣x2+x=﹣(x)2+,∴a=﹣1,該函數(shù)的圖象開口向下,故選項A錯誤;對稱軸是直線x=,故選項B錯誤;當x=時取得最大值,該函數(shù)有最高點,故選項C錯誤;在對稱軸右側的部分從左往右是下降的,故選項D正確;故選:D.本題考查了二次函數(shù)的性質,掌握函數(shù)解析式和二次函數(shù)的性質是解題的關鍵.6、C【分析】根據(jù)勾股定理求得,然后根據(jù)矩形的性質得出.【詳解】解:∵四邊形COED是矩形,∴CE=OD,∵點D的坐標是(1,3),∴,∴,故選:C.本題考查的是矩形的性質,兩點間的距離公式,掌握矩形的對角線的性質是解題的關鍵.7、D【解析】由題意根據(jù)中心對稱圖形的性質即圖形旋轉180°與原圖形能夠完全重合的圖形是中心對稱圖形,依次對選項進行判斷即可.【詳解】解:A.旋轉180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;B.旋轉180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;C.旋轉180°,不能與原圖形能夠完全重合不是中心對稱圖形;故此選項錯誤;D.旋轉180°,能與原圖形能夠完全重合是中心對稱圖形;故此選項正確;故選:D.本題主要考查中心對稱圖形的性質,根據(jù)中心對稱圖形的定義判斷圖形是解決問題的關鍵.8、A【解析】∵DE∥BC,EF∥AB,∴,,∴,∴,∴,即.故選A.點睛:若,則,.9、A【解析】因為∠ACB=90°,AC︰BC=3︰4,則因為∠ACB=∠AED=90°,∠ABC=∠ADE,得△ABC△ADE,得,,則,.故選A.10、C【分析】直接利用切線的性質結合等腰三角形的性質得出∠PCA的度數(shù).【詳解】解:∵PD切⊙O于點C,∴∠OCD=90°,∵AO=CD,∴OC=DC,∴∠COD=∠D=45°,∵AO=CO,∴∠A=∠ACO=22.5°,∴∠PCA=90°﹣22.5°=67.5°.故選:C.此題主要考查了切線的性質以及等腰三角形的性質,正確得出∠COD=∠D=45°是解題關鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)對稱點的特征即可得出答案.【詳解】點關于軸的對稱點的坐標是,故答案為.本題考查的是點的對稱,比較簡單,需要熟練掌握相關基礎知識.12、1【分析】根據(jù)根與系數(shù)的關系即可求出答案.【詳解】解:設另外一個根為x,由根與系數(shù)的關系可知:﹣x=﹣1,∴x=1,故答案為:1.本題考查了一元二次方程根與系數(shù)的關系,熟知根與系數(shù)的關系是解題的關鍵.13、-1.【分析】首先根據(jù)題意,可得:x2+2x=m,2x+3=n,m+n=y(tǒng);然后根據(jù)y=﹣1,可得:x2+2x+2x+3=﹣1,據(jù)此求出x的值是多少,進而求出n的值是多少即可.【詳解】根據(jù)題意,可得:x2+2x=m,2x+3=n,m+n=y(tǒng),∵y=﹣1,∴x2+2x+2x+3=﹣1,∴x2+4x+4=0,∴(x+2)2=0,∴x+2=0,解得x=﹣2,∴n=2x+3=2×(﹣2)+3=﹣1.故答案為:﹣1.此題考查一元二次方程的解法,根據(jù)方程的特點選擇適合的解法是解題的關鍵.14、<.【解析】直接利用特殊角的三角函數(shù)值代入求出答案.【詳解】解:∵sin30°=12、sin45°=22,

∴sin30°<sin45°.此題主要考查了特殊角的三角函數(shù)值,正確記憶相關數(shù)據(jù)是解題關鍵.15、③【分析】根據(jù)過直線外一點作這條直線的垂線,及線段中垂線的做法,圓周角定理,分別作出直角三角形斜邊上的垂線,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;即可作出判斷.【詳解】①、在角∠BAC內作作∠CAD=∠B,交BC于點D,根據(jù)余角的定義及等量代換得出∠B+∠BAD=90°,進而得出AD⊥BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;②、以點A為圓心,略小于AB的長為半徑,畫弧,交線段BC兩點,再分別以這兩點為圓心,大于兩交點間的距離為半徑畫弧,兩弧相交于一點,過這一點與A點作直線,該直線是BC的垂線;根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形是彼此相似的;③、以點B為圓心BA的長為半徑畫弧,交BC于點E,再以E點為圓心,AB的長為半徑畫弧,在BC的另一側交前弧于一點,過這一點及A點作直線,該直線不一定是BE的垂線;從而就不能保證兩個小三角形相似;④、以AB為直徑作圓,該圓交BC于點D,根據(jù)圓周角定理,過AD兩點作直線該直線垂直于BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;故答案為:③.此題主要考查了相似變換以及相似三角形的判定,正確掌握相似三角形的判定方法是解題關鍵.16、1【分析】直接利用關于原點對稱點的性質得出p,q的值進而得出答案.【詳解】解:∵點(p,2)與(﹣3,q)關于原點對稱,∴p=3,q=﹣2,∴p+q=3﹣2=1.故答案為:1.此題主要考查了關于原點對稱點的性質,正確掌握關于原點對稱點的坐標之間的關系是解題關鍵.17、160°【分析】根據(jù)圓周角定理,由∠ACB=100°,得到它所對的圓心角∠α=2∠ACB=200°,用360°-200°即可得到圓心角∠AOB.【詳解】如圖,∵∠α=2∠ACB,

而∠ACB=100°,

∴∠α=200°,

∴∠AOB=360°-200°=160°.

故答案為:160°.本題考查了圓周角定理.在同圓或等圓中,同弧和等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半.18、120【分析】利用扇形的面積公式:S=計算即可.【詳解】設扇形的圓心角為n°.則有3π=,解得n=120,故答案為120此題主要考查扇形的面積公式,解題的關鍵是熟知扇形的面積公式的運用.三、解答題(共66分)19、(1)(2)【分析】(1)直接利用概率公式可得;(2)記這三個項目分別為A、B、C,畫樹狀圖列出所有等可能結果,從中找到符合條件的結果數(shù),再根據(jù)概率公式計算可得.【詳解】(1)小智被分配到A“全程馬拉松”項目組的概率為,故答案為:.(2)畫樹狀圖為:共有9種等可能的結果數(shù),其中小智和小慧被分配到同一個項目組的結果數(shù)為3,所以小智和小慧被分到同一個項目組進行志愿服務的概率為.本題主要考察概率,熟練掌握概率公式是解題關鍵.20、(1)A(6,0),C(0,3);(2)E(,3),y=﹣x+;(3)滿足條件的點P坐標為(6﹣3,3)或(6+3,3)或(,3)或(6,﹣3).【解析】(1)解方程求出OA、OC的長即可解決問題;

(2)首先證明EO=EB,設EO=EB=x,在Rt△ECO中,EO2=OC2+CE2,構建方程求出x,可得點E坐標,再利用待定系數(shù)法即可解決問題;

(3)分情形分別求解即可解決問題;【詳解】(1)由x2﹣9x+18=0可得x=3或6,∵OA、OC的長是關于x的一元二次方程x2﹣9x+18=0的兩個根(OA>OC),∴OA=6,OC=3,∴A(6,0),C(0,3).(2)如圖1中,∵OA∥BC,∴∠EBC=∠AOB,根據(jù)翻折不變性可知:∠EOB=∠AOB,∴∠EOB=∠EBO,∴EO=EB,設EO=EB=x,在Rt△ECO中,∵EO2=OC2+CE2,∴x2=32+(6﹣x)2,解得x=,∴CE=BC﹣EB=6﹣=,∴E(,3),設直線AE的解析式為y=kx+b,則有,解得,∴直線AE的函數(shù)解析式為y=﹣x+.(3)如圖,OB==3.①當OB為菱形的邊時,OF1=OB=BP1=3=,故P1(6﹣3,3),OF3=P3F3=BP3=3,故P3(6+3,3).②當OB為菱形的對角線時,∵直線OB的解析式為y=x,∴線段OB的垂直平分線的解析式為y=﹣2x+,可得P2(,3),③當OF4問問對角線時,可得P4(6,﹣3)綜上所述,滿足條件的點P坐標為(6﹣3,3)或(6+3,3)或(,3)或(6,﹣3).本題考查的是一次函數(shù)的綜合題,熟練掌握一次函數(shù)是解題的關鍵.21、(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6);②點M的坐標為:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【解析】(1)先根據(jù)已知求點A的坐標,利用待定系數(shù)法求二次函數(shù)的解析式;(2)①先得AB的解析式為:y=-2x+2,根據(jù)PD⊥x軸,設P(x,-x2-3x+4),則E(x,-2x+2),根據(jù)PE=DE,列方程可得P的坐標;②先設點M的坐標,根據(jù)兩點距離公式可得AB,AM,BM的長,分三種情況:△ABM為直角三角形時,分別以A、B、M為直角頂點時,利用勾股定理列方程可得點M的坐標.【詳解】(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴=2,∴=2,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴拋物線的解析式為:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式為:y=﹣2x+2,設P(x,﹣x2﹣3x+4),則E(x,﹣2x+2),∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直線PD上,且P(﹣1,6),設M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三種情況:i)當∠AMB=90°時,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)當∠ABM=90°時,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)當∠BAM=90°時,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=,∴M(﹣1,);綜上所述,點M的坐標為:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).此題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,鉛直高度和勾股定理的運用,直角三角形的判定等知識.此題難度適中,解題的關鍵是注意方程思想與分類討論思想的應用.22、(1)見解析;(2)見解析;;(3).【分析】(1)由中心對稱的定義和性質作圖變換后的對應點,再順次連接即可得;

(2)由旋轉變換的定義和性質作圖變換后的對應點,再順次連接即可得;

(3)利用弧長公式計算可得.【詳解】(1)如圖所示,即為所求.(2)如圖所示,即為所求,其中點的坐標為,故答案為:.(3)∵,,∴點所經(jīng)過的路徑長為.本題考查了作圖-旋轉變換:根據(jù)旋轉的性質可知,對應角都相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.23、(1)w=﹣2x2+480x﹣25600;(2)銷售單價定為120元時,每天銷售利潤最大,最大銷售利潤1元(3)銷售單價應定為100元【解析】(1)用每件的利潤乘以銷售量即可得到每天的銷售利潤,即然后化為一般式即可;

(2)把(1)中的解析式進行配方得到頂點式然后根據(jù)二次函數(shù)的最值問題求解;

(3)求所對應的自變量的值,即解方程然后檢驗即可.【詳解】(1)w與x的函數(shù)關系式為:(2)∴當時,w有最大值.w最大值為1.答:銷售單價定為120元時,每天銷售利潤最大,最大銷售利潤1元.(3)當時,解得:∵想賣得快,不符合題意,應舍去.答:銷售單價應定為100元.24、(1)90;(2);

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論