2026屆甘肅省涇川市數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
2026屆甘肅省涇川市數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
2026屆甘肅省涇川市數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
2026屆甘肅省涇川市數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
2026屆甘肅省涇川市數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆甘肅省涇川市數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,在正方形ABCD的外側(cè),作等邊三角形ADE,則∠BED為()A.45° B.15° C.10° D.125°2.對于題目“拋物線l1:(﹣1<x≤2)與直線l2:y=m(m為整數(shù))只有一個交點,確定m的值”;甲的結(jié)果是m=1或m=2;乙的結(jié)果是m=4,則()A.只有甲的結(jié)果正確B.只有乙的結(jié)果正確C.甲、乙的結(jié)果合起來才正確D.甲、乙的結(jié)果合起來也不正確3.如圖,某同學(xué)用圓規(guī)畫一個半徑為的圓,測得此時,為了畫一個半徑更大的同心圓,固定端不動,將端向左移至處,此時測得,則的長為()A. B. C. D.4.如圖,圓錐底面半徑為rcm,母線長為5cm,其側(cè)面展開圖是圓心角為216°的扇形,則r的值為()A.3 B.4 C.5 D.65.口袋中有14個紅球和若干個白球,這些球除顏色外都相同,從口袋中隨機摸出一個球,記下顏色后放回,多次實驗后發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.3,則白球的個數(shù)是()A.5 B.6 C.7 D.86.如圖,l1∥l2∥l3,若,DF=6,則DE等于()A.3 B.3.2 C.3.6 D.47.如圖,點E、F是邊長為4的正方形ABCD邊AD、AB上的動點,且AF=DE,BE交CF于點P,在點E、F運動的過程中,PA的最小值為()A.2 B.2 C.4﹣2 D.2﹣28.圓錐的母線長為4,底面半徑為2,則它的側(cè)面積為()A.4π B.6π C.8π D.16π9.如圖,在平面直角坐標(biāo)系中,直線與x軸交于點A,與y軸交于點B,點C是AB的中點,∠ECD繞點C按順時針旋轉(zhuǎn),且∠ECD=45°,∠ECD的一邊CE交y軸于點F,開始時另一邊CD經(jīng)過點O,點G坐標(biāo)為(-2,0),當(dāng)∠ECD旋轉(zhuǎn)過程中,射線CD與x軸的交點由點O到點G的過程中,則經(jīng)過點B、C、F三點的圓的圓心所經(jīng)過的路徑長為()A. B. C. D.10.下列所給的事件中,是必然事件的是()A.一個標(biāo)準(zhǔn)大氣壓下,水加熱到時會沸騰B.買一注福利彩票會中獎C.連續(xù)4次投擲質(zhì)地均勻的硬幣,4次均硬幣正面朝上D.2020年的春節(jié)小長假辛集將下雪11.如圖,⊙O的半徑為2,△ABC為⊙O內(nèi)接等邊三角形,O為圓心,OD⊥AB,垂足為D.OE⊥AC,垂足為E,連接DE,則DE的長為()A.1 B. C. D.212.已知圓心角為120°的扇形的弧長為6π,該扇形的面積為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,AB是⊙O的直徑,C、D為⊙O上的點,P為圓外一點,PC、PD均與圓相切,設(shè)∠A+∠B=130°,∠CPD=β,則β=_____.14.如圖,在Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一點,AE=5,ED⊥AB,垂足為D,求AD的長15.在Rt△ABC中,∠C=90°,AC=6,BC=8(如圖),點D是邊AB上一點,把△ABC繞著點D旋轉(zhuǎn)90°得到,邊與邊AB相交于點E,如果AD=BE,那么AD長為____.16.將一副三角尺如圖所示疊放在一起,則的值是.17.如圖,讓此轉(zhuǎn)盤自由轉(zhuǎn)動兩次,兩次指針都落在陰影部分區(qū)域(邊界寬度忽略不記)的概率是____________.18.若同時拋擲兩枚質(zhì)地均勻的骰子,則事件“兩枚骰子朝上的點數(shù)互不相同”的概率是.三、解答題(共78分)19.(8分)如圖,兩個班的學(xué)生分別在C、D兩處參加植樹勞動,現(xiàn)要在道路AO、OB的交叉區(qū)域內(nèi)(∠AOB的內(nèi)部)設(shè)一個茶水供應(yīng)點M,M到兩條道路的距離相等,且MC=MD,這個茶水供應(yīng)點的位置應(yīng)建在何處?請說明理由.(保留作圖痕跡,不寫作法)20.(8分)(1)解方程:.(2)已知:關(guān)于x的方程①求證:方程有兩個不相等的實數(shù)根;②若方程的一個根是,求另一個根及k值.21.(8分)國慶期間,某風(fēng)景區(qū)推出兩種旅游觀光活動付費方式:若人數(shù)不超過20人,人均繳費500元;若人數(shù)超過20人,則每增加一位旅客,人均收費降低10元,但是人均收費不低于350元.現(xiàn)在某單位在國慶期間組織一批貢獻突出的職工到該景區(qū)旅游觀光,支付了12000元觀光費,請問:該單位一共組織了多少位職工參加旅游觀光活動?22.(10分)閱讀材料,解答問題:觀察下列方程:①;②;③;…;(1)按此規(guī)律寫出關(guān)于x的第4個方程為,第n個方程為;(2)直接寫出第n個方程的解,并檢驗此解是否正確.23.(10分)如圖,△ABC中,∠BAC=120o,以BC為邊向外作等邊△BCD,把△ABD繞著D點按順時針方向旋轉(zhuǎn)60o后到△ECD的位置.若AB=6,AC=4,求∠BAD的度數(shù)和AD的長.24.(10分)如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,∠EAD=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°,得到△AFB,連接EF.(1)求證:EF=ED;(2)若AB=2,CD=1,求FE的長.25.(12分)如圖1:在Rt△ABC中,AB=AC,D為BC邊上一點(不與點B,C重合),試探索AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論.小明同學(xué)的思路是這樣的:將線段AD繞點A逆時針旋轉(zhuǎn)90°,得到線段AE,連接EC,DE.繼續(xù)推理就可以使問題得到解決.(1)請根據(jù)小明的思路,試探索線段AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論;(2)如圖2,在Rt△ABC中,AB=AC,D為△ABC外的一點,且∠ADC=45°,線段AD,BD,CD之間滿足的等量關(guān)系又是如何的,請證明你的結(jié)論;(3)如圖3,已知AB是⊙O的直徑,點C,D是⊙O上的點,且∠ADC=45°.①若AD=6,BD=8,求弦CD的長為;②若AD+BD=14,求的最大值,并求出此時⊙O的半徑.26.已知:如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于一、三象限內(nèi)的A.B兩點,與x軸交于C點,點A的坐標(biāo)為(2,m),點B的坐標(biāo)為(n,-2),tan∠BOC=.(l)求該反比例函數(shù)和一次函數(shù)的解析式;(2)在x軸上有一點E(O點除外),使得△BCE與△BCO的面積相等,求出點E的坐標(biāo).

參考答案一、選擇題(每題4分,共48分)1、A【分析】由等邊三角形的性質(zhì)可得,進而可得,又因為,結(jié)合等腰三角形的性質(zhì),易得的大小,進而可求出的度數(shù).【詳解】是等邊三角形,,,四邊形是正方形,,,,,,.

故選:.本題考查了正方形的性質(zhì),等邊三角形的性質(zhì),三角形的內(nèi)角和定理,等腰三角形的性質(zhì)和判定的應(yīng)用,解此題的關(guān)鍵是求出的度數(shù),難度適中.2、C【分析】畫出拋物線l1:y=﹣(x﹣1)2+4(﹣1<x≤2)的圖象,根據(jù)圖象即可判斷.【詳解】解:由拋物線l1:y=﹣(x﹣1)2+4(﹣1<x≤2)可知拋物線開口向下,對稱軸為直線x=1,頂點為(1,4),如圖所示:∵m為整數(shù),由圖象可知,當(dāng)m=1或m=2或m=4時,拋物線l1:y=﹣(x﹣1)2+4(﹣1<x≤2)與直線l2:y=m(m為整數(shù))只有一個交點,∴甲、乙的結(jié)果合在一起正確,故選:C.本題考查了二次函數(shù)圖象與一次函數(shù)圖象的交點問題,作出函數(shù)的圖象是解題的關(guān)鍵.3、A【分析】△ABO是等腰直角三角形,利用三角函數(shù)即可求得OA的長,過O'作O'D⊥AB于點D,在直角△AO'D中利用三角函數(shù)求得AD的長,則AB'=2AD,然后根據(jù)BB'=AB'-AB即可求解.【詳解】解:在等腰直角△OAB中,AB=1,則OA=cm,AO'=cm,∠AO'D=×120°=60°,

過O'作O'D⊥AB于點D.

則AD=AO'?sin60°=2×=.

則AB'=2AD=2,

故BB'=AB'-AB=2-1.

故選:A.本題考查了三角函數(shù)的基本概念,主要是三角函數(shù)的概念及運算,關(guān)鍵把實際問題轉(zhuǎn)化為數(shù)學(xué)問題加以計算.4、A【分析】直接根據(jù)弧長公式即可得出結(jié)論.【詳解】∵圓錐底面半徑為rcm,母線長為5cm,其側(cè)面展開圖是圓心角為216°的扇形,∴2πr=×2π×5,解得r=1.故選A.本題考查的是圓錐的相關(guān)計算,熟記弧長公式是解答此題的關(guān)鍵.5、B【分析】設(shè)白球的個數(shù)為x,利用概率公式即可求得.【詳解】設(shè)白球的個數(shù)為x,由題意得,從14個紅球和x個白球中,隨機摸出一個球是白球的概率為0.3,則利用概率公式得:,解得:,經(jīng)檢驗,x=6是原方程的根,故選:B.本題考查了等可能下概率的計算,理解題意利用概率公式列出等式是解題關(guān)鍵.6、C【解析】試題解析:根據(jù)平行線分線段成比例定理,可得:設(shè)解得:故選C.7、D【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半,取BC的中點O,連接OP、OA,然后求出OP=CB=1,利用勾股定理列式求出OA,然后根據(jù)三角形的三邊關(guān)系可知當(dāng)O、P、A三點共線時,AP的長度最?。驹斀狻拷猓涸谡叫蜛BCD中,∴AB=BC,∠BAE=∠ABC=90°,在△ABE和△BCF中,∵,∴△ABE≌△BCF(SAS),∴∠ABE=∠BCF,∵∠ABE+∠CBP=90°∴∠BCF+∠CBP=90°∴∠BPC=90°如圖,取BC的中點O,連接OP、OA,則OP=BC=1,在Rt△AOB中,OA=,根據(jù)三角形的三邊關(guān)系,OP+AP≥OA,∴當(dāng)O、P、A三點共線時,AP的長度最小,AP的最小值=OA﹣OP=﹣1.故選:D.本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),三角形的三邊關(guān)系.確定出AP最小值時點P的位置是解題關(guān)鍵,也是本題的難點.8、C【分析】求出圓錐的底面圓周長,利用公式即可求出圓錐的側(cè)面積.【詳解】解:圓錐的地面圓周長為2π×2=4π,

則圓錐的側(cè)面積為×4π×4=8π.

故選:C.本題考查了圓錐的計算,能將圓錐側(cè)面展開是解題的關(guān)鍵,并熟悉相應(yīng)的計算公式.9、A【解析】先確定點B、A、C的坐標(biāo),①當(dāng)點G在點O時,點F的坐標(biāo)為(0,2),此時點F、B、C三點的圓心為BC的中點,坐標(biāo)為(1,3);②當(dāng)直線OD過點G時,利用相似求出點F的坐標(biāo),根據(jù)圓心在弦的垂直平分線上確定圓心在線段BC的垂直平分線上,故縱坐標(biāo)為,利用兩點間的距離公式求得圓心的坐標(biāo),由此可求圓心所走的路徑的長度.【詳解】∵直線與x軸交于點A,與y軸交于點B,∴B(0,4),A(4,0),∵點C是AB的中點,∴C(2,2),①當(dāng)點G在點O時,點F的坐標(biāo)為(0,2),此時點F、B、C三點的圓心為BC的中點,坐標(biāo)為(1,3);②當(dāng)直線OD過點G時,如圖,連接CN,OC,則CN=ON=2,∴OC=,∵G(-2,0),∴直線GC的解析式為:,∴直線GC與y軸交點M(0,1),過點M作MH⊥OC,∵∠MOH=45,∴MH=OH=,∴CH=OC-OH=,∵∠NCO=∠FCG=45,∴∠FCN=∠MCH,又∵∠FNC=∠MHC,∴△FNC∽△MHC,∴,即,得FN=,∴F(,0),此時過點F、B、C三點的圓心在BF的垂直平分線上,設(shè)圓心坐標(biāo)為(x,),則,解得,當(dāng)∠ECD旋轉(zhuǎn)過程中,射線CD與x軸的交點由點O到點G的過程中,則經(jīng)過點B、C、F三點的圓的圓心所經(jīng)過的路徑為線段,即由BC的中點到點(,),∴所經(jīng)過的路徑長=.故選:A.此題是一道綜合題,考查一次函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)的解析式,相似三角形的判定及性質(zhì)定理,兩點間的距離公式,綜合性比較強,做題時需時時變換思想來解題.10、A【分析】直接利用時間發(fā)生的可能性判定即可.【詳解】解:A、一個標(biāo)準(zhǔn)大氣壓下,水加熱到100℃時會沸騰,是必然事件;B買一注福利彩票會中獎,是隨機事件;C、連續(xù)4次投擲質(zhì)地均勻的硬幣,4次均硬幣正面朝上,是隨機事件;D,2020年的春節(jié)小長假辛集將下雪,是隨機事件.故答案為A.本題考查的是必然事件、不可能事件、隨機事件的概念,掌握三類事件的定義以及區(qū)別與聯(lián)系是解答本題的關(guān)鍵.11、C【分析】過O作于H,得到,連接OB,由為內(nèi)接等邊三角形,得到,求得,根據(jù)垂徑定理和三角形的中位線定理即可得到結(jié)論.【詳解】解:過作于,,連接,為內(nèi)接等邊三角形,,,,,,,,,,故選:.本題考查了垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱巳切沃形痪€定理.12、B【分析】設(shè)扇形的半徑為r.利用弧長公式構(gòu)建方程求出r,再利用扇形的面積公式計算即可.【詳解】解:設(shè)扇形的半徑為r.由題意:=6π,∴r=9,∴S扇形==27π,故選B.本題考查扇形的弧長公式,面積公式等知識,解題的關(guān)鍵是學(xué)會構(gòu)建方程解決問題,屬于中考常考題型.二、填空題(每題4分,共24分)13、100°【分析】連結(jié)OC,OD,則∠PCO=90°,∠PDO=90°,可得∠CPD+∠COD=180°,根據(jù)OB=OC,OD=OA,可得∠BOC=180°?2∠B,∠AOD=180°?2∠A,則可得出與β的關(guān)系式.進而可求出β的度數(shù).【詳解】連結(jié)OC,OD,∵PC、PD均與圓相切,∴∠PCO=90°,∠PDO=90°,∵∠PCO+∠COD+∠ODP+∠CPD=360°,∴∠CPD+∠COD=180°,∵OB=OC,OD=OA,∴∠BOC=180°﹣2∠B,∠AOD=180°﹣2∠A,∴∠COD+∠BOC+∠AOD=180°,∴180°﹣∠CPD+180°﹣2∠B+180°﹣2∠A=180°.∴∠CPD=100°,故答案為:100°.本題利用了切線的性質(zhì),圓周角定理,四邊形的內(nèi)角和為360度求解,解題的關(guān)鍵是熟練掌握切線的性質(zhì).14、AD=1【分析】通過證明△ADE∽△ACB,可得,即可求解.【詳解】解:∵∠C=∠ADE=90°,∠A=∠A,∴△ADE∽△ACB,∴∴,∴AD=1.本題考查了相似三角形的判定與性質(zhì)定理,熟練掌握定理是解題的關(guān)鍵.15、.【解析】在Rt△ABC中,

由旋轉(zhuǎn)的性質(zhì),設(shè)AD=A′D=BE=x,則DE=2x-10,

∵△ABC繞AB邊上的點D順時針旋轉(zhuǎn)90°得到△A′B′C′,

∴∠A′=∠A,∠A′DE=∠C=90°,

∴∽△BCA,∴,∵=10-x,∴,∴x=,故答案為.16、【解析】試題分析:∵∠BAC=∠ACD=90°,∴AB∥CD.∴△ABE∽△DCE.∴.∵在Rt△ACB中∠B=45°,∴AB=AC.∵在RtACD中,∠D=30°,∴.∴.17、【分析】先將非陰影區(qū)域分成兩等份,然后根據(jù)列表格列舉所有等可能的結(jié)果與指針都落在陰影區(qū)域的情況,再利用概率公式即可求解.【詳解】解:如圖,將非陰影區(qū)域分成兩等份,設(shè)三份區(qū)域分別為A,B,C,其中C為陰影區(qū)域,列表格如下,由表可知,共有9種結(jié)果,且每種結(jié)果出現(xiàn)的可能性相同,其中兩次指針都落在陰影區(qū)域的有1種,為(C,C),所以兩次指針都落在陰影區(qū)域的概率為P=.故答案為:本題考查了列表法或樹狀圖求兩步事件概率問題,將非陰影區(qū)域分成兩等份,保證是等可能事件是解答此題的關(guān)鍵.18、.【詳解】解:由題意作出樹狀圖如下:一共有36種情況,“兩枚骰子朝上的點數(shù)互不相同”有30種,所以,P=.考點:列表法與樹狀圖法.三、解答題(共78分)19、作圖見解析,理由見解析.【分析】因為M到兩條道路的距離相等,且使MC=MD,所以M應(yīng)是∠O的平分線和CD的垂直平分線的交點.【詳解】如圖,∠O的平分線和CD的垂直平分線的交點即為茶水供應(yīng)點的位置.理由是:因為M是∠O的平分線和CD的垂直平分線的交點,所以M到∠O的兩邊OA和OB的距離相等,M到C、D的距離相等,所以M就是所求.此題考查了基本作圖以及線段垂直平分線的性質(zhì)和角平分線的性質(zhì),需仔細分析題意,結(jié)合圖形,利用線段的垂直平分線和角的平分線的性質(zhì)是解答此題的關(guān)鍵.20、(1)x1=1,x1=1;(1)①見解析;②另一個根為1,【分析】(1)把方程x1﹣3x+1=0進行因式分解,變?yōu)椋▁﹣1)(x﹣1)=0,再根據(jù)“兩式乘積為0,則至少一式的值為0”求出解;

(1)①由△=b1﹣4ac=k1+8>0,即可判定方程有兩個不相等的實數(shù)根;

②首先將x=﹣1代入原方程,求得k的值,然后解此方程即可求得另一個根.【詳解】(1)解:x1﹣3x+1=0,(x﹣1)(x﹣1)=0,x1=1,x1=1;(1)①證明:∵a=1,b=k,c=﹣1,∴△=b1﹣4ac=k1﹣4×1×(﹣1)=k1+8>0,∴方程有兩個不相等的實數(shù)根;②解:當(dāng)x=﹣1時,(﹣1)1﹣k﹣1=0,解得:k=﹣1,則原方程為:x1﹣x﹣1=0,即(x﹣1)(x+1)=0,解得:x1=1,x1=﹣1,所以另一個根為1.本題考查了一元二次方程ax1+bx+c=0(a,b,c是常數(shù)且a≠0)的根的判別式及根與系數(shù)的關(guān)系;根判別式△=b1?4ac:(1)當(dāng)△>0時,一元二次方程有兩個不相等的實數(shù)根;(1)當(dāng)△=0時,一元二次方程有兩個相等的實數(shù)根;(3)當(dāng)△<0時,一元二次方程沒有實數(shù)根;若x1,x1為一元二次方程的兩根時,x1+x1=,x1?x1=.21、30【分析】設(shè)該單位一共組織了x位職工參加旅游觀光活動,求出當(dāng)人數(shù)為20時的總費用及人均收費10元時的人數(shù),即可得出20<x<1,再利用總費用=人數(shù)×人均收費,即可得出關(guān)于x的一元二次方程,解之取其較小值即可得出結(jié)論.【詳解】解:設(shè)該單位一共組織了x位職工參加旅游觀光活動,∵500×20=10000(元),10000<12000,(500﹣10)=15(人),12000÷10=34(人),34不為整數(shù),∴20<x<20+15,即20<x<1.依題意,得:x[500﹣10(x﹣20)]=12000,整理,得:x2﹣70x+1200=0,解得:x1=30,x2=40(不合題意,舍去).答:該單位一共組織了30位職工參加旅游觀光活動.本題考查了一元二次方程的應(yīng)用,正確理解題意,找準(zhǔn)題中等量關(guān)系列出方程是解題的關(guān)鍵.22、(1)9,2n+1;(2)2n+1,見解析【分析】(1)觀察一系列等式左邊分子為連續(xù)兩個整數(shù)的積,右邊為從3開始的連續(xù)奇數(shù),即可寫出第4個方程及第n個方程;(2)歸納總結(jié)即可得到第n個方程的解為n與n+1,代入檢驗即可.【詳解】解:(1)x+=x+=9,x+=2n+1;故答案為:x+=9;x+=2n+1.(2)x+=2n+1,觀察得:x1=n,x2=n+1,將x=n代入方程左邊得:n+n+1=2n+1;右邊為2n+1,左邊=右邊,即x=n是方程的解;將n+1代入方程左邊得:n+1+n=2n+1;右邊為2n+1,左邊=右邊,即x=n+1是方程的解,則經(jīng)檢驗都為原分式方程的解.本題主要考查的是分式方程的解,根據(jù)所給方程找出規(guī)律是解題的關(guān)鍵.23、AD=10,∠BAD=60°.【解析】先證明△ADE是等邊三角形,再推出A,C,E共線;由于∠ADE=60°,根據(jù)旋轉(zhuǎn)得出AB=CE=6,求出AE即可.【詳解】解:由旋轉(zhuǎn)可知:△ABD≌△ECD∴AB=EC=6,∠BAD=∠EAD=ED∵∠ADE=60°∴△ADE是等邊三角形∴AE=AD∠E=∠DAE=60°∴∠BAD=60°∵∠BAC=120°∴∠DAC=60°=∠DAE∴C在AE上∴AD=AC+CE=4+6=10.【點睛】本題考查的知識點是旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì).24、(1)見解析;(2)EF=.【解析】(1)由旋轉(zhuǎn)的性質(zhì)可求∠FAE=∠DAE=45°,即可證△AEF≌△AED,可得EF=ED;(2)由旋轉(zhuǎn)的性質(zhì)可證∠FBE=90°,利用勾股定理和方程的思想可求EF的長.【詳解】(1)∵∠BAC=90°,∠EAD=45°,∴∠BAE+∠DAC=45°,∵將△ADC繞點A順時針旋轉(zhuǎn)90°,得到△AFB,∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,∴∠BAF+∠BAE=45°=∠FAE,∴∠FAE=∠DAE,AD=AF,AE=AE,∴△AEF≌△AED(SAS),∴DE=EF(2)∵AB=AC=2,∠BAC=90°,∴BC=4,∵CD=1,∴BF=1,BD=3,即BE+DE=3,∵∠ABF=∠ABC=45°,∴∠EBF=90°,∴BF2+BE2=EF2,∴1+(3﹣EF)2=EF2,∴EF=本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理等知識,利用方程的思想解決問題是本題的關(guān)鍵.25、(1)CD2+BD2=2AD2,見解析;(2)BD2=CD2+2AD2,見解析;(3)①7,②最大值為,半徑為【分析】(1)先判斷出∠BAD=CAE,進而得出△ABD≌△ACE,得出BD=CE,∠B=∠ACE,再根據(jù)勾股定理得出DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,即可得出結(jié)論;(2)同(1)的方法得,ABD≌△ACE(SAS),得出BD=CE,再用勾股定理的出DE2=2AD2,CE2=CD2+DE2=CD2+2AD2,即可得出結(jié)論;(3)先根據(jù)勾股定理的出DE2=CD2+CE2=2CD2,再判斷出△ACE≌△BCD(SAS),得出AE=BD,①將AD=6,BD=8代入DE2=2CD2中,即可得出結(jié)論;②先求出CD=7,再將AD+BD=14,CD=7代入,化簡得出﹣(AD﹣)2+,進而求出AD,最后用勾股定理求出AB即可得出結(jié)論.【詳解】解:(1)CD2+BD2=2AD2,理由:由旋轉(zhuǎn)知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∵AB=AC,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE,在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∴∠ACE=45°,∴∠DCE=∠ACB+∠ACE=90°,根據(jù)勾股定理得,DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,∴CD2+BD2=2AD2;(2)BD2=CD2+2AD2,理由:如圖2,將線段AD繞點A逆時針旋轉(zhuǎn)90°,得到線段AE,連接EC,DE,同(1)的方法得,ABD≌△ACE(SAS),∴B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論