新疆昌吉市教育共同體四校2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第1頁
新疆昌吉市教育共同體四校2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第2頁
新疆昌吉市教育共同體四校2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第3頁
新疆昌吉市教育共同體四校2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第4頁
新疆昌吉市教育共同體四校2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

新疆昌吉市教育共同體四校2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在四面體中,,分別是,的中點(diǎn),則()A. B.C. D.2.若直線經(jīng)過,,兩點(diǎn),則直線的傾斜角的取值范圍是()A. B.C. D.3.圓與圓的位置關(guān)系為()A.外切 B.內(nèi)切C.相交 D.相離4.日常飲用水通常都是經(jīng)過凈化的,隨若水純凈度的提高,所需凈化費(fèi)用不斷增加.已知水凈化到純凈度為時(shí)所需費(fèi)用單位:元為那么凈化到純凈度為時(shí)所需凈化費(fèi)用的瞬時(shí)變化率是()元/t.A. B.C. D.5.雙曲線:的左、右焦點(diǎn)分別為、,過的直線與y軸交于點(diǎn)A、與雙曲線右支交于點(diǎn)B,若為等邊三角形,則雙曲線C的離心率為()A. B.C.2 D.6.在平面直角坐標(biāo)系xOy中,過x軸上的點(diǎn)P分別向圓和圓引切線,記切線長(zhǎng)分別為.則的最小值為()A.2 B.3C.4 D.57.若數(shù)列{an}滿足……,則稱數(shù)列{an}為“半差遞增”數(shù)列.已知“半差遞增”數(shù)列{cn}的前n項(xiàng)和Sn滿足,則實(shí)數(shù)t的取值范圍是()A. B.(-∞,1)C. D.(1,+∞)8.已知數(shù)列為等差數(shù)列,若,則()A.1 B.2C.3 D.49.為了更好地研究雙曲線,某校高二年級(jí)的一位數(shù)學(xué)老師制作了一個(gè)如圖所示的雙曲線模型.已知該模型左、右兩側(cè)的兩段曲線(曲線與曲線)為某雙曲線(離心率為2)的一部分,曲線與曲線中間最窄處間的距離為,點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)均關(guān)于該雙曲線的對(duì)稱中心對(duì)稱,且,則()A. B.C. D.10.設(shè)為雙曲線與橢圓的公共的左右焦點(diǎn),它們?cè)诘谝幌笙迌?nèi)交于點(diǎn)是以線段為底邊的等腰三角形,若橢圓的離心率范圍為,則雙曲線的離心率取值范圍是()A. B.C. D.11.函數(shù)的圖象大致是()A. B.C. D.12.已知等比數(shù)列的公比為,則“”是“是遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知直線l:和圓C:,過直線l上一點(diǎn)P作圓C的一條切線,切點(diǎn)為A,則的最小值為______14.已知數(shù)列滿足,,則______.15.已知圓被軸截得的弦長(zhǎng)為4,被軸分成兩部分的弧長(zhǎng)之比為1∶2,則圓心的軌跡方程為______,若點(diǎn),,則周長(zhǎng)的最小值為______16.曲線在點(diǎn)處的切線方程為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過F且與x軸垂直的直線交該拋物線于A,B兩點(diǎn),|AB|=4(1)求拋物線的方程;(2)過點(diǎn)F的直線l交拋物線于P,Q兩點(diǎn),若△OPQ的面積為4,求直線l的斜率(其中O為坐標(biāo)原點(diǎn))18.(12分)已知?jiǎng)狱c(diǎn)在橢圓:()上,,為橢圓左、右焦點(diǎn).過點(diǎn)作軸的垂線,垂足為,點(diǎn)滿足,且點(diǎn)的軌跡是過點(diǎn)的圓(1)求橢圓方程;(2)過點(diǎn),分別作平行直線和,設(shè)交橢圓于點(diǎn),,交橢圓于點(diǎn),,求四邊形的面積的最大值19.(12分)阿基米德(公元前年—公元前年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸與短半軸的乘積.已知平面直角坐標(biāo)系中,橢圓:的面積為,兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成等邊三角形.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過點(diǎn)的直線與交于不同的兩點(diǎn),求面積的最大值.20.(12分)某校為了了解在校學(xué)生的支出情況,組織學(xué)生調(diào)查了該校2014年至2020年學(xué)生的人均月支出y(單位:百元)的數(shù)據(jù)如下表:年份2014201520162017201820192020年份代號(hào)t1234567人均月支出y3.94.34.65.45.86.26.9(1)求2014年至2020年中連續(xù)的兩年里,兩年人均月支出都超過4百元的概率;(2)求y關(guān)于t的線性回歸方程;(3)利用(2)中的回歸方程,預(yù)測(cè)該校2022年的人均月支出.附:最小二乘估計(jì)公式:,21.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是一個(gè)直角梯形,其中∠BAD=90°,AB∥DC,PA⊥底面ABCD,AB=AD=PA=2,DC=1,點(diǎn)M和點(diǎn)N分別為PA和PC的中點(diǎn)(1)證明:直線DM∥平面PBC;(2)求直線BM和平面BDN所成角的余弦值;(3)求二面角M-BD-N正弦值;(4)求點(diǎn)P到平面DBN距離;(5)設(shè)點(diǎn)N在平面BDM內(nèi)的射影為點(diǎn)H,求線段HA的長(zhǎng)22.(10分)已知圓的圓心在直線上,與軸正半軸相切,且被直線:截得的弦長(zhǎng)為.(1)求圓的方程;(2)設(shè)點(diǎn)在圓上運(yùn)動(dòng),點(diǎn),且點(diǎn)滿足,記點(diǎn)的軌跡為.①求的方程,并說明是什么圖形;②試探究:在直線上是否存在定點(diǎn)(異于原點(diǎn)),使得對(duì)于上任意一點(diǎn),都有為一常數(shù),若存在,求出所有滿足條件的點(diǎn)的坐標(biāo),若不存在,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】利用向量的加法法則直接求解.【詳解】在四面體中,,分別是,的中點(diǎn),故選:A2、D【解析】應(yīng)用兩點(diǎn)式求直線斜率得,結(jié)合及,即可求的范圍.【詳解】根據(jù)題意,直線經(jīng)過,,,∴直線的斜率,又,∴,即,又,∴;故選:D3、A【解析】根據(jù)兩圓半徑和、差、圓心距之間的大小關(guān)系進(jìn)行判斷即可.【詳解】由,該圓的圓心為,半徑為.圓圓心為,半徑為,因?yàn)閮蓤A的圓心距為,兩圓的半徑和為,所以兩圓的半徑和等于兩圓的圓心距,因此兩圓相外切,故選:A4、B【解析】由題意求出函數(shù)的導(dǎo)函數(shù),然后令即可求解【詳解】因?yàn)?,所以,則,故選:5、B【解析】由雙曲線的定義知,,又為等邊三角形,所以,由對(duì)稱性有,所以,在直角三角形中,求出,在三角形中,由余弦定理求出,從而即可求解.【詳解】解:由雙曲線的定義知,,又為等邊三角形,所以,由對(duì)稱性有,所以,在直角三角形中,,在三角形中,由余弦定理有,所以,解得,所以雙曲線C的離心率,故選:B.6、D【解析】利用兩點(diǎn)間的距離公式,將切線長(zhǎng)的和轉(zhuǎn)化為到兩圓心的距離和,利用三點(diǎn)共線距離最小即可求解.詳解】,圓心,半徑,圓心,半徑設(shè)點(diǎn)P,則,即到與兩點(diǎn)距離之和的最小值,當(dāng)、、三點(diǎn)共線時(shí),的和最小,即的和最小值為.故選:D【點(diǎn)睛】本題考查了兩點(diǎn)間的距離公式,需熟記公式,屬于基礎(chǔ)題.7、A【解析】根據(jù),利用遞推公式求得數(shù)列的通項(xiàng)公式.再根據(jù)新定義的意義,代入解不等式即可求得實(shí)數(shù)的取值范圍.【詳解】因?yàn)樗援?dāng)時(shí),兩式相減可得,即,所以數(shù)列是以公比的等比數(shù)列當(dāng)時(shí),所以,則由“差半遞增”數(shù)列的定義可知化簡(jiǎn)可得解不等式可得即實(shí)數(shù)的取值范圍為故選:A.8、D【解析】利用等差數(shù)列下標(biāo)和的性質(zhì)求值即可.【詳解】由等差數(shù)列下標(biāo)和性質(zhì)知:.故選:D9、D【解析】依題意以雙曲線的對(duì)稱中心為坐標(biāo)原點(diǎn)建系,設(shè)雙曲線的方程為,根據(jù)已知求得,點(diǎn)縱坐標(biāo)代入計(jì)算即可求得橫坐標(biāo)得出結(jié)果.【詳解】以雙曲線的對(duì)稱中心為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,因?yàn)殡p曲線的離心率為2,所以可設(shè)雙曲線的方程為,依題意可得,則,即雙曲線的方程為.因?yàn)椋缘目v坐標(biāo)為18.由,得,故.故選:D.10、A【解析】設(shè)橢圓的標(biāo)準(zhǔn)方程為,根據(jù)橢圓和雙曲線的定義可得到兩圖形離心率之間的關(guān)系,再根據(jù)橢圓的離心率范圍可得雙曲線的離心率取值范圍.【詳解】設(shè)橢圓的標(biāo)準(zhǔn)方程為,,則有已知,兩式相減得,即,,因?yàn)?,解得故選:A.11、A【解析】根據(jù)函數(shù)的定義域及零點(diǎn)的情況即可得到答案.【詳解】函數(shù)的定義域?yàn)?,則排除選項(xiàng)、,當(dāng)時(shí),,則在上單調(diào)遞減,且,,由零點(diǎn)存在定理可知在上存在一個(gè)零點(diǎn),則排除,故選:.12、B【解析】先分析充分性:假設(shè)特殊等比數(shù)列即可判斷;再分析充分性,由條件得恒成立,再對(duì)和進(jìn)行分類討論即可判斷.【詳解】先分析充分性:在等比數(shù)列中,,所以假設(shè),,所以,等比數(shù)列為遞減數(shù)列,故充分性不成立;分析必要性:若等比數(shù)列的公比為,且是遞增數(shù)列,所以恒成立,即恒成立,當(dāng),時(shí),成立,當(dāng),時(shí),不成立,當(dāng),時(shí),不成立,當(dāng),時(shí),不成立,當(dāng),時(shí),成立,當(dāng),時(shí),不成立,當(dāng),時(shí),不恒成立,當(dāng),時(shí),不恒成立,所以能使恒成立的只有:,和,,易知此時(shí)成立,所以必要性成立.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】求出圓C的圓心坐標(biāo)、半徑,再借助圓的切線性質(zhì)及勾股定理列式計(jì)算作答.【詳解】圓C:,圓心為,半徑,點(diǎn)C到直線l的距離,由圓的切線性質(zhì)知:,當(dāng)且僅當(dāng),即點(diǎn)P是過點(diǎn)C作直線l的垂線的垂足時(shí)取“=”,所以的最小值為1故答案為:114、1023【解析】由數(shù)列遞推公式求特定項(xiàng),依次求下去即可解決.【詳解】數(shù)列中,則,,,,,,故答案為:102315、①.②.【解析】設(shè),圓半徑為,進(jìn)而根據(jù)題意得,,進(jìn)而得其軌跡方程為雙曲線,再根據(jù)雙曲線的定義,將周長(zhǎng)轉(zhuǎn)化為求的最小值,進(jìn)而求解.【詳解】解:如圖1,因?yàn)閳A被軸截得的弦長(zhǎng)為4,被軸分成兩部分的弧長(zhǎng)之比為1∶2,所以,,所以中點(diǎn),則,,所以,故設(shè),圓半徑為,則,,,所以,即所以圓心的軌跡方程為,表示雙曲線,焦點(diǎn)為,,如圖2,連接,由雙曲線的定義得,即,所以周長(zhǎng)為,因?yàn)?,所以周長(zhǎng)的最小值為故答案為:;.16、.【解析】由求導(dǎo)公式求出導(dǎo)數(shù),再把代入求出切線的斜率,代入點(diǎn)式方程化為一般式即可.【詳解】由題意得,∴在點(diǎn)處的切線的斜率是,則在點(diǎn)處的切線方程是,即.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義.注意區(qū)分“在某點(diǎn)處的切線”與“過某點(diǎn)的切線”,前者“某點(diǎn)”是切點(diǎn),后者“某點(diǎn)”不一定是切點(diǎn).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)拋物線的定義以及拋物線通徑的性質(zhì)可得,從而可得結(jié)果;(2)設(shè)直線的方程為,代入,得,利用弦長(zhǎng)公式,結(jié)合韋達(dá)定理可得的值,由點(diǎn)到直線的距離公式,根據(jù)三角形面積公式可得,從而可得結(jié)果.【詳解】(1)由拋物線的定義得到準(zhǔn)線的距離都是p,所以|AB|=2p=4,所以拋物線的方程為y2=4x(2)設(shè)直線l的方程為y=k(x-1),P(x1,y1),Q(x2,y2)因?yàn)橹本€l與拋物線有兩個(gè)交點(diǎn),所以k≠0,得,代入y2=4x,得,且恒成立,則,y1y2=-4,所以又點(diǎn)O到直線l的距離,所以,解得,即【點(diǎn)睛】本題主要考查直線與拋物線的位置關(guān)系的相關(guān)問題,意在考查綜合利用所學(xué)知識(shí)解決問題能力和較強(qiáng)的運(yùn)算求解能力,其常規(guī)思路是先把直線方程與圓錐曲線方程聯(lián)立,消元、化簡(jiǎn),然后應(yīng)用根與系數(shù)的關(guān)系建立方程,解決相關(guān)問題18、(1);(2)【解析】(1)設(shè)點(diǎn)和,由題意可得點(diǎn)的軌跡方程,將點(diǎn)Q的坐標(biāo)代入T的方程計(jì)算出即可;(2)設(shè)的方程,和,聯(lián)立橢圓方程并消元得到關(guān)于y的一元二次方程,根據(jù)韋達(dá)定理得到,進(jìn)而求出和,根據(jù)平行線間的距離公式可得與的距離,得出所求四邊形面積的表達(dá)式,結(jié)合換元法和基本不等式化簡(jiǎn)求值即可.【詳解】解:(1)設(shè)點(diǎn),,則點(diǎn),,,∵,∴,∴,∵點(diǎn)在橢圓上,∴,即為點(diǎn)的軌跡方程又∵點(diǎn)的軌跡是過的圓,∴,解得,所以橢圓的方程為(2)由題意,可設(shè)的方程為,聯(lián)立方程,得設(shè),,則,且,所以,同理,又與的距離為,所以,四邊形的面積為,令,則,且,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立所以,四邊形的面積最大值為19、(1);(2).【解析】(1)根據(jù)題意計(jì)算得到,得到橢圓方程.(2)設(shè)直線的方程為,聯(lián)立方程,根據(jù)韋達(dá)定理得到,,表示出,解得答案.【詳解】(1)依題意有解得所以橢圓的標(biāo)準(zhǔn)方程是.(2)由題意直線的斜率不能為,設(shè)直線的方程為,由方程組得,設(shè),,所以,,所以,所以,令(),則,,因?yàn)樵谏蠁握{(diào)遞增,所以當(dāng),即時(shí),面積取得最大值為.【點(diǎn)睛】本題考查了橢圓方程,橢圓內(nèi)三角形面積的最值問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20、(1);(2);(3)7.8百元.【解析】(1)應(yīng)用列舉法,結(jié)合古典概型計(jì)算公式進(jìn)行進(jìn)行求解即可;(2)根據(jù)題中所給的公式進(jìn)行計(jì)算求解即可;(3)根據(jù)(2)的結(jié)論,利用代入法進(jìn)行求解即可.【小問1詳解】2014年至2020年中連續(xù)的兩年有、、、、、共6種組合,其中只有不滿足連續(xù)兩年人均月支出都超過4百元,所以連續(xù)兩年人均月支出都超過4百元的概率為;【小問2詳解】由已知數(shù)據(jù)分別求出公式中的量.,,,,所求回歸方程為;小問3詳解】由(2)知,,將2022年的年份代號(hào)代入(2)中的回歸方程,得,故預(yù)測(cè)該校2022年人均月支出為7.8百元.21、(1)證明見解析(2)(3)(4)(5)【解析】(1)以為原點(diǎn),建立空間直角坐標(biāo)系,利用向量法,證明與平面的法向量垂直,從而證明直線平面(2)求出平面的法向量,利用向量法,求出直線和平面所成角的余弦值(3)求出平面的法向量和平面的法向量,利用向量法,求出二面角的正弦值(4)求出的坐標(biāo),再求出平面的法向量,利用向量法,求出點(diǎn)到平面的距離;(5)設(shè)點(diǎn)在平面內(nèi)的射影為點(diǎn),從而表示出的坐標(biāo),求出到平面的距離,列出方程組,求出點(diǎn)坐標(biāo),從而求出的長(zhǎng)度.【小問1詳解】四棱錐,底面是一個(gè)直角梯形,,平面,所以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,,,,,,,,,設(shè)平面的法向量,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論