版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1/22026年上海市普通高校春季高考數(shù)學仿真模擬卷03(考試時間:120分鐘試卷滿分:150分)一、填空題(本大題共12題,滿分54分,第1-6題每題4分,第7-12題每題5分)1.已知a,b,m∈R,復數(shù)z=2i?m1+i2.已知點A1,0,B?4,3,C2,1,則CA在AB3.1x?x7的二項展開式中,4.若函數(shù)fx=lga?5.不等式3x?1x6.在公差不為0的等差數(shù)列an中,若a3是ax與ay的等差中項,則7.函數(shù)fx=xcosx8.在△ABC中,若cos2A+cos2B=2cos29.如圖,向一個高為4且底面水平放置的正四棱錐容器注水,水面高度為2時停止注水(不考慮容器厚度).將此四棱錐容器倒置時,水面高度為.
10.已知拋物線C:y2=8x的頂點為O,焦點為F.點P在C上,點Q與點P關(guān)于y軸對稱.若QF平分∠11.為某商品設計一個“H”型商標,如圖所示,“H”型商標由兩豎一橫三個等寬的矩形組成.設計要求“H”型商標關(guān)于點O中心對稱,兩個豎直矩形全等且它們的長邊是橫向矩形長邊的2倍,點O到點A的距離為4cm.若記“H”型商標的面積為S,則S的最大值為cm212.已知函數(shù)fx=mx?1ex二、選擇題(本大題共4題,滿分18分,第13-14題每題4分,第15-16題每題5分)13.下列函數(shù)中,是偶函數(shù),且在?∞,0上單調(diào)遞減的是(
)A.y=x2 B.y=x?214.空間中有兩個不同的平面α,β和兩條不同的直線m,A.若α⊥β,m⊥α,C.若α⊥β,n⊥β,則n//αD.若n?α,n//β15.設m∈R且m≠0,“m??+A.m≠2 B.m>0且m≠2 C.m16.設無窮數(shù)列an的前n項和為Sn,定義σkA.當an=1時,σ2025S2025C.當an=D.當an=三、解答題(本大題共5題,共14+14+14+18+18=78分)17.已知函數(shù)fx=sinωxcosωx(1)求fx(2)若方程fx=12在18.已知四棱柱ABCD?A1B1C1D1中,底面ABCD為梯形,AB//CD,A1A⊥平面(1)求證:D1N//(2)求平面CB1M(3)求點B到平面CB19.如圖,某地有一條寬為10m的公路,該公路在A處為直角彎道現(xiàn)有一輛“斯太爾”型大貨車要通過該彎道,已知該貨車的寬為2.5m,長為lm(1)假設該貨車剛好能通過該彎道,且∠CBA=θ,試求貨車長l(2)若該貨車的長為16m,則它能否順利通過該彎道?請說明理由.20.已知橢圓C1:x2a(1)求橢圓C1(2)已知B,A是橢圓C的左、右頂點,不與x軸平行或重合的直線l交橢圓C于M,N兩點,記直線BM的斜率為k1,直線AN的斜率為k2,且k2(3)如圖,點P為橢圓C1上不同于A,B的任一點,在拋物線C2:y2=2pxp>021.設定義域為R的函數(shù)y=f(x)在R上可導,導函數(shù)為y=f′(x).若區(qū)間I及實數(shù)t(1)判斷y=x2+3x(2)若實數(shù)t滿足:y=sinx為[0,π2](3)已知函數(shù)y=f(x)存在最大值.求證:對任意正整數(shù)n,y=f
2026年上海市普通高校春季高考數(shù)學仿真模擬卷03(考試時間:120分鐘試卷滿分:150分)一、填空題(本大題共12題,滿分54分,第1-6題每題4分,第7-12題每題5分)1.已知a,b,m∈R,復數(shù)z=2i?m1+i【答案】2【解析】z=所以a=2?m所以a+故答案為:22.已知點A1,0,B?4,3,C2,1,則CA在AB【答案】?【解析】因為A1,0,B?4,3,C2,1,所以CA所以CA?AB=所以CA?所以CA在AB上的投影向量為CA?故答案為:?3.1x?x7的二項展開式中,【答案】?21【解析】設1x?x7的展開式的第則Tr+1=由2r?7=3?所以x3所在的項為:T6=所以x3項的系數(shù)為?21故答案為:?214.若函數(shù)fx=lga?【答案】1【解析】fx所以f?因為f(所以f(?所以lgax即lga2x所以a2所以a2=13此時定義域為(?∞,?3)∪(3,∞),關(guān)于原點對稱,滿足奇函數(shù)要求,符合題意.故答案為:1.5.不等式3x?1x【答案】x【解析】3x?1x≤1,即2x則其解集為x|0<故答案為:x|0<6.在公差不為0的等差數(shù)列an中,若a3是ax與ay的等差中項,則【答案】3【解析】因為在公差不為0的等差數(shù)列an中,a3是ax所以2a3=因此1x當且僅當yx=4所以1x+4故答案為:37.函數(shù)fx=xcosx【答案】y【解析】f′f′所以切線方程為:y?2=即y=故答案為:y8.在△ABC中,若cos2A+cos2B=2cos2【答案】(0,【解析】由cos2A+cos2B由正弦定理得a2+b2=2又C∈(0,π),且余弦函數(shù)y=cosx在(0,π)而正弦函數(shù)y=sinx在(0,π)上單調(diào)遞增,因此所以sinC的取值范圍為(0,故答案為:(0,9.如圖,向一個高為4且底面水平放置的正四棱錐容器注水,水面高度為2時停止注水(不考慮容器厚度).將此四棱錐容器倒置時,水面高度為.
【答案】2【解析】當正面放時,設正四棱錐的體積為V,高為4,水的體積為V1則水的上方形成一個小正四棱錐的體積為V?V1,根據(jù)正四棱錐的性質(zhì)有V當?shù)狗艜r,由于水的體積不變而且形成一個小四棱錐,設其高為h,根據(jù)四棱錐的性質(zhì)有V1V=(h故答案為:210.已知拋物線C:y2=8x的頂點為O,焦點為F.點P在C上,點Q與點P關(guān)于y軸對稱.若QF平分∠【答案】2【解析】如圖,因為PQ//FO所以∠PQF=∠于是點Q在準線上,x由P,Q關(guān)于y軸對稱,得xP故答案為:2.11.為某商品設計一個“H”型商標,如圖所示,“H”型商標由兩豎一橫三個等寬的矩形組成.設計要求“H”型商標關(guān)于點O中心對稱,兩個豎直矩形全等且它們的長邊是橫向矩形長邊的2倍,點O到點A的距離為4cm.若記“H”型商標的面積為S,則S的最大值為cm2【答案】40【解析】記ABCD為右側(cè)豎直矩形,過O作OM⊥AB,垂足為M,OM交CD于設∠AOM=θ所以AM=4sinθ,所以AB=8sinθ,所以AD=MN=所以“H”型商標的面積S=2所以S=所以S=40所以當θ=π8時,S此時AB=8sin故答案為:40212.已知函數(shù)fx=mx?1ex【答案】3【解析】因為函數(shù)fx=m所以f′x在因為f′x=mxex?2令hx=2令h′x>0,得12<所以函數(shù)hx在12,1又h12=0,h1=當32e2<m<1設兩個交點的橫坐標分別為x1、x2,且當12<x<x1或當x1<x<x所以函數(shù)fx在12,x1此時,函數(shù)fx有兩個極值點,合乎題意.因此,實數(shù)m的取值范圍為3故答案為:32二、選擇題(本大題共4題,滿分18分,第13-14題每題4分,第15-16題每題5分)13.下列函數(shù)中,是偶函數(shù),且在?∞,0上單調(diào)遞減的是(
)A.y=x2 B.y=x?2【答案】A【解析】對于A,令fx=y又f?x=由二次函數(shù)的性質(zhì)可知函數(shù)y=x2對于B,令fx=y又f?x=由冪函數(shù)的性質(zhì)可知函數(shù)y=x?2對于C,令fx=y因為f?x=對于D,y=log2所以y=故選:A.14.空間中有兩個不同的平面α,β和兩條不同的直線m,A.若α⊥βB.若α⊥βC.若α⊥β,n⊥βD.若n?α,n//β,m?β,m【答案】B【解析】選項A,若α⊥β,m⊥選項B,若α⊥β,m⊥即為它們的法向量垂直,則m⊥選項C,若n⊥β,且α⊥β,則n//選項D,若n?α,n//故選:B.15.設m∈R且m≠0,“m??+A.m≠2 B.m>0且m≠2 C.m【答案】A【解析】不等式m+4m解得m>0且m故m≠2是m而CD不滿足必要性,B為充要條件.故選:A.16.設無窮數(shù)列an的前n項和為Sn,定義σkA.當an=1B.當an=C.當an=D.當an=【答案】D【解析】對于A選項:當an=1時,對于B選項:當an=(?1)n?1時,S對于C選項:當an=1又nnσk=1對于D選項:當an=1σ2025故選:D.三、解答題(本大題共5題,共14+14+14+18+18=78分)17.已知函數(shù)fx=sinωxcosωx(1)求fx(2)若方程fx=12在【答案】(1)fx=sin(2)13π【解析】(1)由fx則最小正周期T=2π2令π2解得512則fx單調(diào)減區(qū)間5(2)因為fx=1當x∈0,m若sin2則116π≤2m則實數(shù)m的取值范圍為13π1218.已知四棱柱ABCD?A1B1C1D1中,底面ABCD為梯形,AB//CD,A1A⊥平面(1)求證:D1N//(2)求平面CB1M(3)求點B到平面CB【答案】(1)證明見解析(2)2(3)2【解析】(1)取CB1中點P,連接NP,由N是B1C1的中點,故NP由M是DD1的中點,故D1則有D1M//NP、D1又MP?平面CB1M,故D1N//(2)以A為原點建立如圖所示空間直角坐標系,.由題意A0,0,0、B2,0,0、B12,0,2、M0,1,1則有CB1=1,?1,2,設平面CB1M則有m?CB1=x?y+2設平面BB1C則有n?CB1=a?b+2設平面CB1M與平面BB1故平面CB1M與平面B(3)由BB1=0,0,2,平面故點B到平面CB1M19.如圖,某地有一條寬為10m的公路,該公路在A處為直角彎道現(xiàn)有一輛“斯太爾”型大貨車要通過該彎道,已知該貨車的寬為2.5m,長為lm(1)假設該貨車剛好能通過該彎道,且∠CBA=θ,試求貨車長l(2)若該貨車的長為16m,則它能否順利通過該彎道?請說明理由.【答案】(1)l=【解析】(1)如圖,延長ED,交AC于點G,過點G作GH⊥在Rt△FHG中,∠FGH=θ,在Rt△GDC中,∠GCD=θ,所以DF=同理可得FE=所以l=DF+(2)令sinθ則2sinθcosθ令l=16,問題即轉(zhuǎn)化為關(guān)于t的方程16=20t方程整理得16t令f(t)=16所以f(t)又因為f(2)=21?202<0因此該貨車不能順利通過該彎道.20.已知橢圓C1:x2a(1)求橢圓C1(2)已知B,A是橢圓C的左、右頂點,不與x軸平行或重合的直線l交橢圓C于M,N兩點,記直線BM的斜率為k1,直線AN的斜率為k2,且k2(3)如圖,點P為橢圓C1上不同于A,B的任一點,在拋物線C2:y2=2pxp>0【答案】(1)x(2)證明見解析(3)34【解析】(1)因為橢圓的離心率為12,且ab所以e=ca故橢圓的方程為C1(2)設直線l的方程為x=ty+nn由x24+Δ=6nt2則y1+y而A2,0,B?2,0,直線NA斜率k1=y1x1+2得到x124因此k1由題意得k2=2由Mx1,y1,N則k=3而3n+24n?2則直線l的方程為x=ty+23(3)由(1)知A2,0,設Qx1,y連接QR,交PA于Dx∵四邊形AQPR為平行四邊形,∴D為PA,QR的中點且QR法一:kAP∴kAP?kOD又∵y12=2p∴直線QR的方程為y?∴由y?y0∴由Δ=4y02由①②得0<y∴2p>3∴2p≥32,即p≥法二:設QR:y=kx+mk≠0,將由韋達定理可得x1+x即?2km∴x0=∵x0=∴得x3=2x∴P∵點P∈C1即km?令2p3k=sinθ我們把2p3k由②得k=2p代入①得?2km解得p>31+cosθ8∴31+cosθ8<3421.設定義域為R的函數(shù)y=f(x)在R上可導,導函數(shù)為y=f′(x).若區(qū)間I及實數(shù)t(1)判斷y=x2+3x(2)若實數(shù)t滿足:y=sinx為[0,π2](3)已知函數(shù)y=f(x)存在最大值.求證:對任意正整數(shù)n,y=f【答案】(1)是,理由見解析;(2)t≤0且t(3)證明見解析.【解析】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年宿遷職業(yè)技術(shù)學院單招職業(yè)傾向性測試題庫及完整答案詳解1套
- 2026年海南體育職業(yè)技術(shù)學院單招職業(yè)適應性測試題庫及參考答案詳解1套
- 2026年綿陽飛行職業(yè)學院單招職業(yè)適應性測試題庫及答案詳解一套
- 2026年福州職業(yè)技術(shù)學院單招職業(yè)傾向性測試題庫及答案詳解1套
- 2026年濟寧職業(yè)技術(shù)學院單招職業(yè)技能考試題庫及參考答案詳解一套
- 2026年貴州工貿(mào)職業(yè)學院單招職業(yè)適應性測試題庫及參考答案詳解1套
- 2026年安陽職業(yè)技術(shù)學院單招職業(yè)技能考試題庫及完整答案詳解1套
- 2026年宣城職業(yè)技術(shù)學院單招職業(yè)技能考試題庫及答案詳解1套
- 2026年湖北省恩施土家族苗族自治州單招職業(yè)傾向性測試題庫及參考答案詳解
- 2026年大同煤炭職業(yè)技術(shù)學院單招職業(yè)適應性測試題庫及參考答案詳解
- 中國昭通中藥材國際中心項目可行性研究報告
- 2025中國融通資產(chǎn)管理集團有限公司招聘筆試備考試題(230人)附答案解析
- 2026馬年春節(jié)新年年貨節(jié)大集廟會(金馬迎春年貨大集)活動策劃方案
- 心臟搭橋課件
- 2025年廣東省第一次普通高中學業(yè)水平合格性考試(春季高考)思想政治試題(含答案詳解)
- 人工智能行業(yè)-“人工智能+”行動深度解讀與產(chǎn)業(yè)發(fā)展機遇
- 養(yǎng)殖場貸款申請書樣本
- 2025棗莊市生態(tài)環(huán)境修復礦區(qū)復墾政策實施效果與國土空間規(guī)劃
- (一診)達州市2026屆高三第一次診斷性測試思想政治試題(含標準答案)
- 購車意向金合同范本
- 2025廣東廣電網(wǎng)絡校園招聘筆試歷年參考題庫附帶答案詳解
評論
0/150
提交評論