新疆北京師范大學克拉瑪依附屬學校2025-2026學年數(shù)學高二上期末達標檢測模擬試題含解析_第1頁
新疆北京師范大學克拉瑪依附屬學校2025-2026學年數(shù)學高二上期末達標檢測模擬試題含解析_第2頁
新疆北京師范大學克拉瑪依附屬學校2025-2026學年數(shù)學高二上期末達標檢測模擬試題含解析_第3頁
新疆北京師范大學克拉瑪依附屬學校2025-2026學年數(shù)學高二上期末達標檢測模擬試題含解析_第4頁
新疆北京師范大學克拉瑪依附屬學校2025-2026學年數(shù)學高二上期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

新疆北京師范大學克拉瑪依附屬學校2025-2026學年數(shù)學高二上期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“方程為雙曲線方程”的()A充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.若等軸雙曲線C過點,則雙曲線C的頂點到其漸近線的距離為()A.1 B.C. D.23.已知直線與直線垂直,則實數(shù)()A.10 B.C.5 D.4.已知是兩條不同的直線,是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件5.為了了解某地區(qū)的名學生的數(shù)學成績,打算從中抽取一個容量為的樣本,現(xiàn)用系統(tǒng)抽樣的方法,需從總體中剔除個個體,在整個過程中,每個個體被剔除的概率和每個個體被抽取的概率分別為()A. B.C. D.6.已知等比數(shù)列滿足,,則數(shù)列前6項的和()A.510 B.126C.256 D.5127.已知在等比數(shù)列中,,,則()A.9或 B.9C.27或 D.278.點到直線的距離為A.1 B.2C.3 D.49.已知向量,.若,則()A. B.C. D.10.《萊茵德紙草書》是世界上最古老的數(shù)學著作之一.書中有這樣一道題目:把個面包分給個人,使每個人所得成等差數(shù)列,且使較大的三份之和的是較小的兩份之和,則最小的一份為()A. B.C. D.11.已知拋物線的焦點為,點在拋物線上,且,則的橫坐標為()A.1 B.C.2 D.312.已知角的頂點與坐標原點重合,始邊與x軸的非負半軸重合,角終邊上有一點(1,2),為銳角,且,則()A.-18 B.-6C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過拋物線的焦點F作斜率大于0的直線l交拋物線于A,B兩點(A在B的上方),且l與準線交于點C,若,則_________.14.如圖所示,奧林匹克標志由五個互扣的環(huán)圈組成,五環(huán)象征五大洲的團結.若從該奧林匹克標志的五個環(huán)圈中任取2個,則這2個環(huán)圈恰好相交的概率為___________.15.如圖,在等腰直角△ABC中,,點P是邊AB上異于A、B的一點,光線從點P出發(fā),經BC、CA反射后又回到原點P.若光線QR經過△ABC的內心,則___________.16.如果方程表示焦點在軸上的橢圓,那么實數(shù)的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C的方程為.(1)直線l1過點P(3,1),傾斜角為45°,且與圓C交于A,B兩點,求AB的長;(2)求過點P(3,1)且與圓C相切的直線l2的方程.18.(12分)設集合(1)若,求;(2)設,若是成立的必要不充分條件,求實數(shù)a的取值范圍19.(12分)已知圓心為的圓,滿足下列條件:圓心在軸上,與直線相切,且被軸截得的弦長為,圓的面積小于(1)求圓的標準方程;(2)設過點的直線與圓交于不同的兩點、,以、為鄰邊作平行四邊形.是否存在這樣的直線,使得直線與恰好平行?如果存在,求出的方程,如果不存在,請說明理由20.(12分)已知圓關于直線對稱,且圓心C在軸上.(1)求圓C的方程;(2)直線與圓C交于A、B兩點,若為等腰直角三角形,求直線的方程.21.(12分)已知橢圓的右焦點是橢圓上的一動點,且的最小值是1,當垂直長軸時,.(1)求橢圓的標準方程;(2)設直線與橢圓相切,且交圓于兩點,求面積的最大值,并求此時直線方程.22.(10分)如圖,在正方體中,分別是,的中點.求證:(1)平面;(2)平面平面.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據(jù)“小推大”原則進行判斷即可.【詳解】因為方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.2、A【解析】先求出雙曲線C的標準方程,再求頂點到其漸近線的距離.【詳解】設等軸雙曲線C的標準方程為,因為點在雙曲線上,所以,解得,所以雙曲線C的標準方程為,故上頂點到其一條漸近線的距離為.故選:A3、B【解析】根據(jù)兩直線垂直,列出方程,即可求解.【詳解】由題意,直線與直線垂直,可得,解得.故選:B.4、B【解析】根據(jù)垂直關系的性質可判斷.【詳解】由題,,則或,若,則或或與相交,故充分性不成立;若,則必有,故必要性成立,所以“”是“”的必要不充分條件.故選:B.5、D【解析】根據(jù)每個個體被抽取的概率都是相等的、被剔除的概率也都是相等的,分別由剔除的個數(shù)和抽取的樣本容量除以總體個數(shù)即可求解.【詳解】根據(jù)系統(tǒng)抽樣的定義和方法可知:每個個體被抽取的概率都是相等的,每個個體被剔除的概率也都是相等的,所以每個個體被剔除的概率為,每個個體被抽取的概率為,故選:D.6、B【解析】設等比數(shù)列的公比為,由題設條件,求得,再結合等比數(shù)列的求和公式,即可求解.【詳解】設等比數(shù)列的公比為,因為,,可得,解得,所以數(shù)列前6項的和.故選:B.【點睛】本題主要考查了等比數(shù)列的通項公式,以及等比數(shù)列的前項和公式的應用,其中解答中熟記等比數(shù)列的通項公式和求和公式,準確計算是解答的關鍵,著重考查推理與運算能力.7、B【解析】根據(jù)等比數(shù)列的性質可求.【詳解】因為為等比數(shù)列,設公比為,則,解得,又,所以.故選:B.8、B【解析】直接利用點到直線的距離公式得到答案.【詳解】,答案為B【點睛】本題考查了點到直線的距離公式,屬于簡單題.9、A【解析】根據(jù)給定條件利用空間向量平行的坐標表示直接計算作答.【詳解】向量,,因,則,解得,所以,B,D都不正確;,C不正確,A正確.故選:A10、A【解析】設5人分到的面包數(shù)量從小到大記為,設公差為,可得,,求出,根據(jù)等差數(shù)列的通項公式,得到關于關系式,即可求出結論.【詳解】設5人分到的面包數(shù)量從小到大記為,設公差為,依題意可得,,,,解得,.故選:A.【點睛】本題以數(shù)學文化為背景,考查等差數(shù)列的前項和、通項公式基本量的計算,等差數(shù)列的性質應用是解題的關鍵,屬于中檔題.11、C【解析】利用拋物線的定義轉化為到準線的距離,即可求得.【詳解】拋物線的焦點坐標為,準線方程為,,∴,故選:C.12、A【解析】由終邊上的點可得,由同角三角函數(shù)的平方、商數(shù)關系有,再應用差角、倍角正切公式即可求.【詳解】由題設,,,則,又,,所以.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】分別過A,B作準線的垂線,垂足分別為,,由可求.【詳解】分別過A,B作準線的垂線,垂足分別為,,設,,則,∴,∴.故答案為:2.14、【解析】利用古典概型求概率.【詳解】從該奧林匹克標志的五個環(huán)圈中任取2個,共有10種情況,其中這2個環(huán)圈恰好相交的情況有4種,則所求的概率.故答案為:.15、【解析】以為坐標原點建立空間直角坐標系,設出點的坐標,求得△的內心坐標,根據(jù)△內心以及關于的對稱點三點共線,即可求得點的坐標,則問題得解.【詳解】根據(jù)題意,以為坐標原點,建立平面直角坐標系,設點關于直線的對稱點為,關于軸的對稱點為,如下所示:則,不妨設,則直線的方程為,設點坐標為,則,且,整理得,解得,即點,又;設△的內切圓圓心為,則由等面積法可得,解得;故其內心坐標為,由及△的內心三點共線,即,整理得,解得(舍)或,故.故答案為:.16、【解析】化簡橢圓的方程為標準形式,列出不等式,即可求解.【詳解】由題意,方程可化為,因為方程表示焦點在軸上的橢圓,可得,解得,實數(shù)的取值范圍是.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)x=3或【解析】(1)首先利用點斜式求出直線的方程,再利用點到直線的距離公式求出圓心到直線的距離,最后利用垂直定理、勾股定理計算可得;(2)依題意可得點在圓外,分直線的斜率存在與不存在兩種情況討論,當直線的斜率不存在直線得到直線方程,但直線的斜率存在時設直線方程為,利用點到直線的距離公式得到方程,解得,即可得解;【小問1詳解】解:根據(jù)題意,直線的方程為,即,則圓心到直線的距離為故;【小問2詳解】解:根據(jù)題意,點在圓外,分兩種情況討論:當直線的斜率不存在時,過點的直線方程是,此時與圓C:相切,滿足題意;當直線的斜率存在時,設直線方程為,即,直線與圓相切時,圓心到直線的距離為解得此時,直線的方程為,所以滿足條件的直線的方程是或.18、(1)(2)【解析】(1)根據(jù)不等式的解答求得,當時,求得,結合集合并集的運算,即可求解;(2)由題意得到是的真子集,根據(jù)集合間的包含關系,列出不等式組,即可求解.【小問1詳解】解:由,解得,即,當時,可得,所以.【小問2詳解】解:由集合,因為,且是成立的必要不充分條件,是的真子集,所以且等號不能同時成立,解得,其中當和是滿足題意,故實數(shù)的取值范圍是.19、(1);(2)不存在,理由見解析.【解析】(1)設圓心,設圓的半徑為,可得出,根據(jù)已知條件可得出關于實數(shù)的方程,求出的值,可得出的值,進而可得出圓的標準方程;(2)分析可知直線的斜率存在,可設直線的方程為,設點、,將直線的方程與圓的方程聯(lián)立,由可求得的取值范圍,列出韋達定理,分析可得,可求得點的坐標,由已知可得出,求出的值,檢驗即可得出結論.【小問1詳解】解:設圓心,設圓的半徑為,則,由題意可得,由勾股定理可得,則,由題意可得,解得,則,因此,圓的標準方程為.【小問2詳解】解:若直線的斜率不存在,此時直線與軸重合,則、、三點共線,不合乎題意.所以,直線的斜率存在,可設直線的方程為,設點、,聯(lián)立,可得,,解得或,由韋達定理可得,,則,因為四邊形為平行四邊形,則,因為,則,則,解得,因為或,因此,不存直線,使得直線與恰好平行.20、(1)(2)或【解析】(1)根據(jù)題意得到等量關系,求出,,進而求出圓的方程;(2)結合第一問求出的圓心和半徑,及題干條件得到圓心到直線的距離為,列出方程,求出的值,進而得到直線方程【小問1詳解】由題意得:直線過圓心,即,且,解得:,,所以圓C的方程為;【小問2詳解】的圓心為,半徑為2,由題意得:,圓心到直線的距離為,即,解得:或,所以直線的方程為:或.21、(1);(2),.【解析】(1)由的最小值為1,得到,再由,結合,求得的值,即可求得橢圓的方程.(2)設切線的方程為,聯(lián)立方程組,根據(jù)直線與橢圓相切,求得,結合點到直線的距離公式和圓的弦長公式,求得的面積的表示,結合函數(shù)的單調性,即可求解.【詳解】(1)由題意,點橢圓上的一動點,且的最小值是1,得,因為當垂直長軸時,可得,所以,即,又由,解得,所以橢圓的標準方程為.(2)由題意知切線的斜率一定存在,否則不能形成,設切線的方程為,聯(lián)立,整理得,因為直線與橢圓相切,所以,化簡得,則,因為點到直線的距離,所以,即,故的面積為,因為,可得,即,函數(shù)在上單調遞增,所以,當時取等號,則,即面積的最大值為.當時,此時,所以直線的方程為.【點睛】對于直線與橢圓的位置關系的處理方法:1、判定與應用直線與橢圓的位置關系,一把轉化為研究直線方程與橢圓組成的方程組的解得個數(shù),結合判別式求解;2、對于過定點的直線,也可以通過定點在橢圓的內部或在橢圓上,判定直線與橢圓的位置關系.22、證明見

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論