山西省呂梁學(xué)院附中2026屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第1頁
山西省呂梁學(xué)院附中2026屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第2頁
山西省呂梁學(xué)院附中2026屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第3頁
山西省呂梁學(xué)院附中2026屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第4頁
山西省呂梁學(xué)院附中2026屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山西省呂梁學(xué)院附中2026屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過雙曲線Ω:(a>0,b>0)右焦點(diǎn)F作x軸的垂線,與Ω在第一象限的交點(diǎn)為M,且直線AM的斜率大于2,其中A為Ω的左頂點(diǎn),則Ω的離心率的取值范圍為()A.(1,3) B.(3,+∞)C.(1,) D.(,+∞)2.已知,為橢圓上關(guān)于短軸對稱的兩點(diǎn),、分別為橢圓的上、下頂點(diǎn),設(shè),、分別為直線,的斜率,則的最小值為()A. B.C. D.3.已知圓柱的底面半徑是1,高是2,那么該圓柱的側(cè)面積是()A.2 B.C. D.4.如圖,O是坐標(biāo)原點(diǎn),P是雙曲線右支上的一點(diǎn),F(xiàn)是E的右焦點(diǎn),延長PO,PF分別交E于Q,R兩點(diǎn),已知QF⊥FR,且,則E的離心率為()A. B.C. D.5.若拋物線焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為A. B.C. D.6.已知函數(shù),其中e是自然數(shù)對數(shù)的底數(shù),若,則實(shí)數(shù)a的取值范圍是A. B.C. D.7.已知點(diǎn),則滿足點(diǎn)到直線的距離為,點(diǎn)到直線距離為的直線的條數(shù)有()A.1 B.2C.3 D.48.已知直線和互相平行,則實(shí)數(shù)的取值為()A或3 B.C. D.1或9.在數(shù)列中,,,,則()A.2 B.C. D.110.已知,則方程與在同一坐標(biāo)系內(nèi)對應(yīng)的圖形編號可能是()A.①④ B.②③C.①② D.③④11.如圖,我市某地一拱橋垂直軸截面是拋物線,已知水利人員在某個時刻測得水面寬,則此時刻拱橋的最高點(diǎn)到水面的距離為()A. B.C. D.12.設(shè)變量,滿足約束條件,則的最大值為()A.1 B.6C.10 D.13二、填空題:本題共4小題,每小題5分,共20分。13.容積為V圓柱形密封金屬飲料罐,它的高與底面半徑比值為___________時用料最省.14.已知等差數(shù)列的公差為1,且是和的等比中項(xiàng),則前10項(xiàng)的和為___________.15.已知正三角形邊長為a,則該三角形內(nèi)任一點(diǎn)到三邊的距離之和為定值.類比上述結(jié)論,在棱長為a的正四面體內(nèi),任一點(diǎn)到其四個面的距離之和為定值_____.16.已知正三棱柱中,底面積為,一個側(cè)面的周長為,則正三棱柱外接球的表面積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項(xiàng)和,數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,其中,且成等差數(shù)列.(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.18.(12分)已知函數(shù)(a是常數(shù)).(1)當(dāng)時,求的單調(diào)區(qū)間與極值;(2)若,求a的取值范圍.19.(12分)已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為4,直線與拋物線交于兩點(diǎn).(1)求此拋物線的方程;(2)若以為直徑的圓過原點(diǎn)O,求實(shí)數(shù)k的值.20.(12分)如圖,在三棱柱中,側(cè)棱垂直于底面,分別是的中點(diǎn)(1)求證:平面平面;(2)求證:平面;(3)求三棱錐體積21.(12分)已知函數(shù)在處有極值.(1)求常數(shù)a,b的值;(2)求函數(shù)在上的最值.22.(10分)如圖,在直四棱柱中,(1)求二面角的余弦值;(2)若點(diǎn)P為棱的中點(diǎn),點(diǎn)Q在棱上,且直線與平面所成角的正弦值為,求的長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】求點(diǎn)A和M的坐標(biāo),進(jìn)而表示斜率,可得,整理得b2>2ac+2a2,從而可解得離心率的范圍.【詳解】F(c,0),設(shè)M(c,yM),(yM>0)代入可解得yM=,A(-a,0),由于kAM>2,即,整理得b2>2ac+2a2,又b2=c2-a2,∴c2-a2>2ac+2a2,即c2-2ac-3a2>0,∴e2-2e-3>0,e<-1(舍)或e>3.答案:B【點(diǎn)睛】解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.2、A【解析】設(shè)出點(diǎn),的坐標(biāo),并表示出兩個斜率、,把代數(shù)式轉(zhuǎn)化成與點(diǎn)的坐標(biāo)相關(guān)的代數(shù)式,再與橢圓有公共點(diǎn)解決即可.【詳解】橢圓中:,設(shè)則,則,,令,則它對應(yīng)直線由整理得由判別式解得即,則的最小值為故選:A3、D【解析】由圓柱的側(cè)面積公式直接可得.【詳解】故選:D4、B【解析】令雙曲線E的左焦點(diǎn)為,連線即得,設(shè),借助雙曲線定義及直角用a表示出|PF|,,再借助即可得解.【詳解】如圖,令雙曲線E的左焦點(diǎn)為,連接,由對稱性可知,點(diǎn)線段中點(diǎn),則四邊形是平行四邊形,而QF⊥FR,于是有是矩形,設(shè),則,,,在中,,解得或m=0(舍去),從而有,中,,整理得,,所以雙曲線E的離心率為故選:B5、D【解析】解:橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則,故選D6、B【解析】利用函數(shù)的奇偶性將函數(shù)轉(zhuǎn)化為f(M)≤f(N)的形式,再利用單調(diào)性脫去對應(yīng)法則f,轉(zhuǎn)化為一般的二次不等式求解即可【詳解】由于,,則f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函數(shù)f(x)為奇函數(shù)故原不等式f(a﹣1)+f(2a2)≤0,可轉(zhuǎn)化為f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函數(shù)f(x)單調(diào)遞增,則由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故選B【點(diǎn)睛】本題考查了函數(shù)的奇偶性和單調(diào)性的判定及應(yīng)用,考查了不等式的解法,屬于中檔題7、D【解析】以為圓心,為半徑,為圓心,為半徑分別畫圓,將所求轉(zhuǎn)化為求圓與圓的公切線條數(shù),判斷兩圓的位置關(guān)系,從而得公切線條數(shù).【詳解】以為圓心,為半徑,為圓心,為半徑分別畫圓,如圖所示,由題意,滿足點(diǎn)到直線的距離為,點(diǎn)到直線距離為的直線的條數(shù)即為圓與圓的公切線條數(shù),因?yàn)?,所以兩圓外離,所以兩圓的公切線有4條,即滿足條件的直線有4條.故選:D【點(diǎn)睛】解答本題的關(guān)鍵是將滿足點(diǎn)到直線的距離為,點(diǎn)到直線距離為的直線的條數(shù)轉(zhuǎn)化為圓與圓的公切線條數(shù),從而根據(jù)圓與圓的位置關(guān)系判斷出公切線條數(shù).8、B【解析】利用兩直線平行的等價條件求得實(shí)數(shù)m的值.【詳解】∵兩條直線x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故選B【點(diǎn)睛】已知兩直線的一般方程判定兩直線平行或垂直時,記住以下結(jié)論,可避免討論:已知,,則,9、A【解析】根據(jù)題中條件,逐項(xiàng)計(jì)算,即可得出結(jié)果.【詳解】因?yàn)?,,,所以,因?故選:A.10、B【解析】結(jié)合橢圓、雙曲線、拋物線的圖像,分別對①②③④分析m、n的正負(fù),即可得到答案.【詳解】對于①:由雙曲線的圖像可知:;由拋物線的圖像可知:同號,矛盾.故①錯誤;對于②:由雙曲線的圖像可知:;由拋物線的圖像可知:異號,符合要求.故②成立;對于③:由橢圓的圖像可知:;由拋物線的圖像可知:同號,且拋物線的焦點(diǎn)在x軸上,符合要求.故③成立;對于④:由橢圓的圖像可知:;由拋物線的圖像可知:同號,且拋物線的焦點(diǎn)在x軸上,矛盾.故④錯誤;故選:B11、D【解析】代入計(jì)算即可.【詳解】設(shè)B點(diǎn)的坐標(biāo)為,由拋物線方程得,則此時刻拱橋的最高點(diǎn)到水面的距離為2米.故選:D12、C【解析】畫出約束條件表示的平面區(qū)域,將變形為,可得需要截距最小,觀察圖象,可得過點(diǎn)時截距最小,求出點(diǎn)A坐標(biāo),代入目標(biāo)式即可.【詳解】解:畫出約束條件表示的平面區(qū)域如圖中陰影部分:又,即,要取最大值,則在軸上截距要最小,觀察圖象可得過點(diǎn)時截距最小,由,得,則.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)圓柱的底面半徑為,高為,容積為,由,得到,進(jìn)而求得表面積,結(jié)合不等式,即可求解.【詳解】設(shè)圓柱的底面半徑為,高為,容積為,則,即有,可得圓柱的表面積為,當(dāng)且僅當(dāng)時,即時最小,即用料最省,此時,可得.故答案為:.14、【解析】利用等比中項(xiàng)及等差數(shù)列通項(xiàng)公式求出首項(xiàng),再利用等差數(shù)列的前項(xiàng)和公式求出前10項(xiàng)的和.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,由已知條件得,即,,解得,則.故答案為:.15、【解析】利用正四面體內(nèi)任一點(diǎn)可將正四面體分成四個小四面體,令它們的高分別為,由體積相等即可求得;【詳解】正三角形邊長為a,則該三角形內(nèi)任一點(diǎn)到三邊的距離分別為,即有:,解得同理,棱長為a的正四面體內(nèi),任一點(diǎn)到其四個面的距離分別為,即有:,解得故答案為:【點(diǎn)睛】本題考查了利用空間幾何體的等體積法求高的和為定值,屬于簡單題;16、【解析】首先由條件求出底面邊長和高,然后設(shè)、分別為上、下底面的的中心,連接,設(shè)的中點(diǎn)為,則點(diǎn)為正三棱柱外接球的球心,然后求出的長度即可.【詳解】如圖所示,設(shè)底面邊長為,則底面面積為,所以,因此等邊三角形的高為:,因?yàn)橐粋€側(cè)面的周長為,所以設(shè)、分別為上、下底面的的中心,連接,設(shè)的中點(diǎn)為則點(diǎn)為正三棱柱外接球的球心,連接、則在直角三角形中,即外接球的半徑為,所以外接球的表面積為,故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)睛:求幾何體的外接球半徑的關(guān)鍵是根據(jù)幾何體的性質(zhì)找出球心的位置.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)利用求出數(shù)列的通項(xiàng),再求出等比數(shù)列的公比即得解;(2)求出,再利用錯位相減法求解.【小問1詳解】解:,.當(dāng)時,,適合..設(shè)等比數(shù)列公比為,,,即,或(舍去),.【小問2詳解】解:,,,上述兩式相減,得,所以所以.18、(1)函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,極小值是,無極大值.(2)【解析】(1)由當(dāng),得到,求導(dǎo),再由,求解;(2)將,轉(zhuǎn)化為成立,令,求其最大值即可.【小問1詳解】解:當(dāng)時,,定義域?yàn)椋?,?dāng)時,,當(dāng)時,,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以時,取得極小值是,無極大值.【小問2詳解】因?yàn)?,即成?設(shè),則,當(dāng)時,,當(dāng)時,,所以在上單調(diào)遞增,在上單調(diào)遞減,所以,所以,即.19、(1)(2)【解析】(1)根據(jù)焦點(diǎn)到準(zhǔn)線的距離,可得到,可得結(jié)果.(2)假設(shè)的坐標(biāo),得到,然后聯(lián)立直線與拋物線的方程,利用韋達(dá)定理,根據(jù),可得結(jié)果.【詳解】(1)由題知:拋物線的焦點(diǎn)到準(zhǔn)線的距離為,∴拋物線的方程為(2)設(shè)聯(lián)立,得,則,,,∵以為直徑圓過原點(diǎn)O,∴,∴,即,解得或(舍),∴【點(diǎn)睛】本題主要考查直線與拋物線的幾何關(guān)系的應(yīng)用,屬基礎(chǔ)題.20、(1)證明見解析;(2)證明見解析;(3)【解析】(1)由直線與平面垂直證明直線與平行的垂直;(2)證明直線與平面平行;(3)求三棱錐的體積就用體積公式.(1)在三棱柱中,底面ABC,所以AB,又因?yàn)锳B⊥BC,所以AB⊥平面,因?yàn)锳B平面,所以平面平面.(2)取AB中點(diǎn)G,連結(jié)EG,F(xiàn)G,因?yàn)镋,F(xiàn)分別是、的中點(diǎn),所以FG∥AC,且FG=AC,因?yàn)锳C∥,且AC=,所以FG∥,且FG=,所以四邊形為平行四邊形,所以EG,又因?yàn)镋G平面ABE,平面ABE,所以平面.(3)因?yàn)?AC=2,BC=1,AB⊥BC,所以AB=,所以三棱錐的體積為:==.考點(diǎn):本小題主要考查直線與直線、直線與平面、平面與平面的垂直與平行的證明;考查幾何體的體積的求解等基礎(chǔ)知識,考查同學(xué)們的空間想象能力、推理論證能力、運(yùn)算求解能力、邏輯推理能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想21、(1);(2)最大值為-1,最值為-5.【解析】(1)根據(jù)給定條件結(jié)合函數(shù)的導(dǎo)數(shù)建立方程,求解方程并驗(yàn)證作答.(2)利用導(dǎo)數(shù)探討函數(shù)在上的單調(diào)性即可計(jì)算作答.【小問1詳解】依題意:,則,解得:,當(dāng)時,,當(dāng)時,,當(dāng)時,,則函數(shù)在處有極值,所以.【小問2詳解】由(1)知:,,,當(dāng)時,,當(dāng)時,,因此,在上單調(diào)遞增,在上單調(diào)遞減,于是得,而,,則,所以函數(shù)在上的最大值為-1,最值為-5.22、(1),(2)【解析】(1)推導(dǎo)出,以A為原點(diǎn),分別以,,所在的直線為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系,利用空間向量求二面角的余弦值;(2)設(shè),則,求出平面的法向量,利用空間向量求出的長【詳解】解(1)在直四棱柱中,因?yàn)槠矫?,平面,平面,所以因?yàn)?,所以以A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論