版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆湖南省衡陽市樟樹中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將一個表面積為的球用一個正方體盒子裝起來,則這個正方體盒子的最小體積為()A. B.C. D.2.已知雙曲線的左、右焦點分別為,,過點作直線交雙曲線的右支于A,B兩點.若,則雙曲線的離心率為()A. B.C. D.3.棱長為1的正四面體的表面積是()A. B.C. D.4.是等差數(shù)列,且,,則的值()A. B.C. D.5.過拋物線的焦點的直線交拋物線于不同的兩點,則的值為A.2 B.1C. D.46.設(shè)異面直線、的方向向量分別為,,則異面直線與所成角的大小為()A. B.C. D.7.雙曲線的焦點到漸近線的距離為()A. B.2C. D.8.設(shè)集合,集合,當(dāng)有且僅有一個元素時,則r的取值范圍為()A.或 B.或C.或 D.或9.定義“等方差數(shù)列”:如果一個數(shù)列從第二項起,每一項的平方與它的前一項的平方的差都等于同一個常數(shù),那么這個數(shù)列就叫作等方差數(shù)列,這個常數(shù)叫作該數(shù)列的方公差.設(shè)是由正數(shù)組成的等方差數(shù)列,且方公差為4,,則數(shù)列的前24項和為()A. B.3C. D.610.在等差數(shù)列中,已知,則()A.4 B.8C.3 D.611.如圖,在三棱柱中,E,F(xiàn)分別是BC,中點,,則()A.B.C.D.12.過原點O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,定點,若直線與拋物線相交于、兩點(點在、中間),且與拋物線的準(zhǔn)線交于點,若,則的長為______.14.已知圓柱軸截面是邊長為4的正方形,則圓柱的側(cè)面積為______________
.15.點為橢圓上的一動點,則點到直線的距離的最小值為___________.16.拋物線的準(zhǔn)線方程是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是公差不為0的等差數(shù)列,其前項和為,,且,,成等比數(shù)列.(1)求和;(2)若,數(shù)列的前項和為,且對任意的恒成立,求實數(shù)的取值范圍.18.(12分)已知等差數(shù)列的前n項和為,且,(1)求數(shù)列的通項公式;(2)若,求k的值19.(12分)已知拋物線上的點到焦點的距離為6(1)求拋物線的方程;(2)設(shè)為拋物線的焦點,直線與拋物線交于,兩點,求的面積20.(12分)在中,角,,所對的邊分別為,,,其外接圓半徑為,已知(1)求角;(2)若邊的長是該邊上高的倍,求21.(12分)已知中,分別為角的對邊,且(1)求;(2)若為邊的中點,,求的面積22.(10分)已知點是橢圓E:一點,且橢圓的離心率為.(1)求此橢圓E方程;(2)設(shè)橢圓的左頂點為A,過點A向上作一射線交橢圓E于點B,以AB為邊作矩形ABCD,使得對邊CD經(jīng)過橢圓中心O.(i)求矩形ABCD面積的最大值;(ii)問:矩形ABCD能否為正方形?若能,求出直線AB的方程;若不能,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】求出球的半徑,要使這個正方形盒子的體積最小,則這個正方體正好是該球的外切正方體,所以正方體的棱長等于球的直徑,從而可得出答案.【詳解】解:設(shè)球的半徑為,則,得,故該球的半徑為11cm,若要使這個正方形盒子的體積最小,則這個正方體正好是該球的外切正方體,所以正方體的棱長等于球的直徑,即22cm,所以這個正方體盒子的最小體積為.故選:C.2、A【解析】根據(jù)給定條件結(jié)合雙曲線定義求出,,再借助余弦定理求出半焦距c即可計算作答.【詳解】因,令,,而雙曲線實半軸長,由雙曲線定義知,,而,于是可得,在等腰中,,令雙曲線半焦距為c,在中,由余弦定理得:,而,,,解得,所以雙曲線的離心率為.故選:A【點睛】方法點睛:求雙曲線的離心率的方法:(1)定義法:通過已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;(2)齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;(3)特殊值法:通過取特殊值或特殊位置,求出離心率.3、D【解析】采用數(shù)形結(jié)合,根據(jù)邊長,結(jié)合正四面體的概念,計算出正三角形的面積,可得結(jié)果【詳解】如圖由正四面體的概念可知,其四個面均是全等的等邊三角形,由其棱長為1,所以,所以可知:正四面體的表面積為,故選:D4、B【解析】根據(jù)等差數(shù)列的性質(zhì)計算【詳解】因為是等差數(shù)列,所以,,也成等差數(shù)列,所以故選:B5、D【解析】本題首先可以通過直線交拋物線于不同的兩點確定直線的斜率存在,然后設(shè)出直線方程并與拋物線方程聯(lián)立,求出以及的值,然后通過拋物線的定義將化簡,最后得出結(jié)果【詳解】因為直線交拋物線于不同的兩點,所以直線的斜率存在,設(shè)過拋物線的焦點的直線方程為,由可得,,因為拋物線的準(zhǔn)線方程為,所以根據(jù)拋物線的定義可知,,所以,綜上所述,故選D【點睛】本題考查了拋物線的相關(guān)性質(zhì),主要考查了拋物線的定義、過拋物線焦點的直線與拋物線相交的相關(guān)性質(zhì),考查了計算能力,是中檔題6、C【解析】利用空間向量夾角的公式直接求解.【詳解】,,,.由異面直線所成角的范圍為,故異面直線與所成的角為.故選:C7、A【解析】根據(jù)點到直線距離公式進行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知:,該雙曲線的焦點坐標(biāo)為:,雙曲線的漸近線方程為:,所以焦點到漸近線的距離為:,故選:A8、B【解析】由已知得集合M表示以點圓心,以2半徑左半圓,與y軸的交點為,集合N表示以點為圓心,以r為半徑的圓,當(dāng)圓C與圓O相外切于點P,有且僅有一個元素時,圓C過點M時,有且有兩個元素,當(dāng)圓C過點N,有且僅有一個元素,由此可求得r的取值范圍.【詳解】解:由得,所以集合M表示以點圓心,以2半徑的左半圓,與y軸的交點為,集合表示以點為圓心,以r為半徑的圓,如下圖所示,當(dāng)圓C與圓O相外切于點P時,有且僅有一個元素時,此時,當(dāng)圓C過點M時,有兩個元素,此時,所以,當(dāng)圓C過點N時,有且僅有一個元素,此時,所以,所以當(dāng)有且僅有一個元素時,則r的取值范圍為或,故選:B.9、C【解析】根據(jù)等方差數(shù)列的定義,結(jié)合等差數(shù)列的通項公式,運用裂項相消法進行求解即可.【詳解】因為是方公差為4的等方差數(shù)列,所以,,∴,∴,∴,故選:C10、B【解析】根據(jù)等差數(shù)列的性質(zhì)計算出正確答案.【詳解】由等差數(shù)列的性質(zhì)可知,得.故選:B11、D【解析】根據(jù)空間向量線性運算的幾何意義進行求解即可.【詳解】,故選:D12、A【解析】直線AC、BD與坐標(biāo)軸重合時求出四邊形面積,與坐標(biāo)軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對角線互相垂直,由橢圓性質(zhì)知,四邊形ABCD的四個頂點為橢圓頂點時,而,四邊形ABCD的面積,當(dāng)直線AC斜率存在且不0時,設(shè)其方程為,由消去y得:,設(shè),則,,直線BD方程為,同理得:,則有,當(dāng)且僅當(dāng),即或時取“=”,而,所以四邊形ABCD面積最小值為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分別過點、作、垂直于拋物線的準(zhǔn)線于、,則,求出直線的方程,可求得拋物線的焦點的坐標(biāo),可得出拋物線的標(biāo)準(zhǔn)方程,再將直線的方程與拋物線的方程聯(lián)立,求出點的縱坐標(biāo),利用拋物線的定義可求得線段的長.【詳解】如圖,分別過點、作、垂直于拋物線的準(zhǔn)線于、,則,由得,所以,,又,所以,直線的方程為,所以,,則,則拋物線的方程為,設(shè)點的縱坐標(biāo)為,由,得或,因為點在、之間,則,所以,.故答案為:.14、【解析】由圓柱軸截面的性質(zhì)知:圓柱體的高為,底面半徑為,根據(jù)圓柱體的側(cè)面積公式,即可求其側(cè)面積.【詳解】由圓柱的軸截面是邊長為4的正方形,∴圓柱體的高為,底面半徑為,∴圓柱的側(cè)面積為.故答案為:.15、【解析】設(shè)與平行的直線與相切,求解出此時的方程,則點到直線距離的最大值可根據(jù)平行直線間的距離公式求解出.【詳解】設(shè)與平行的直線,當(dāng)與橢圓相切時有:,所以,所以,所以,由題意取時,到直線的距離較小此時與(即)的距離為,所以點到直線距離的最小值為,故答案為:.16、【解析】由題意可得p=4,所以準(zhǔn)線方程,填三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)求出,即得數(shù)列的和;(2)由題得,再利用分組求和求出,得到,令,判斷函數(shù)的單調(diào)性得解.【詳解】(1)設(shè)數(shù)列的公差為,由已知得,,即,整理得,又,,;(2)由題意:,,,令,則,即對任意的恒成立,是單調(diào)遞增數(shù)列,,只需,所以.【點睛】方法點睛:求數(shù)列的最值,常用數(shù)列的單調(diào)性求解,求數(shù)列的單調(diào)性,一般利用定義法作差或作商判斷.18、(1)(2)10【解析】(1)設(shè)等差數(shù)列的公差為d,利用已知建立方程組,解之可求得數(shù)列的通項公式;(2)利用等差數(shù)列的前項和公式,化簡即可求解.【小問1詳解】解:設(shè)等差數(shù)列的公差為d,由已知,,得,解得,則;小問2詳解】解:由(1)得,則由,得或(舍去),所以的值為10.19、(1)(2)【解析】(1)根據(jù)焦半徑公式可求,從而可求拋物線的方程.(2)求出的長度后可求的面積.【小問1詳解】因為,所以,故拋物線方程為:.【小問2詳解】設(shè),且,由可得,故或,故,故,故,而到直線的距離為,故的面積為20、(1);(2)【解析】(1)利用正弦定理將角化邊,再利用余弦定理計算可得;(2)記邊上的高為,不妨設(shè),即可求出,再利用余弦定理求出,在中,記,根據(jù)銳角三角函數(shù)求出,,最后根據(jù),利用兩角和的余弦公式計算可得;【詳解】解:(1)由已知條件,所以,所以所以,,由余弦定理可得,而,于是(2)記邊上的高為,不妨設(shè),則,,,所以,由余弦定理得,在中,記,則,,所以21、(1);(2)【解析】(1)利用正弦定理化邊為角可得,化簡可得,結(jié)合,即得解;(2)在中,由余弦定理得,可得,利用面積公式即得解【詳解】(1)中由正弦定理及條件,可得,∵,,∴,∵,∴,或,又∵,∴,∴,,∴(2)為邊的中點,,,得,中,由余弦定理得,∴,∴,∵,∴,22、(1);(2)(i);(ii).【解析】(1)根據(jù)給定條件列出關(guān)于a,b的方程組,解方程組代入得解.(2)(i)設(shè)直線AB方程,與橢圓方程聯(lián)立求出線段AB長,再求出原點O到直線AB距離列出矩形面積求解即可;(ii)由(i)及列出方程,由方程解的情況即可判斷計算作答.【小問1詳解】令橢圓半焦距為c,依題意,,解得,所以橢圓E的方程為:.【小問2詳解】(i)由(1)知,,設(shè)直線AB的斜率為,則直線AB的方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學(xué)攝影(攝影理論)試題及答案
- 2025年大學(xué)大三(護理學(xué))兒科護理綜合測試試題及答案
- 2025年中職至大學(xué)階段(工程造價類)專業(yè)技能綜合測試試題及答案
- 2025年高職旅游(旅游線路設(shè)計)試題及答案
- 2025年高職體育教育(體育教學(xué)法)試題及答案
- 2025年高職資源勘查(礦產(chǎn)普查)試題及答案
- 2025年大學(xué)第三學(xué)年(土木工程)鋼結(jié)構(gòu)設(shè)計原理試題及答案
- 稀有貴金屬高效綜合循環(huán)利用建設(shè)項目可行性研究報告模板-立項拿地
- 金融工程美國就業(yè)指南
- 2025 小學(xué)二年級科學(xué)上冊長椅的材質(zhì)與設(shè)計課件
- 2026 中考【初中道法時政熱點】
- 2025年上半年山東高速集團有限公司校園招聘(255人)筆試參考題庫附答案
- 故意傷害案件課件
- 膽管狹窄護理
- 消防操作員其他實操技能
- 2025年高考數(shù)學(xué)試題分類匯編:數(shù)列解析版
- 吉林省戶用光伏施工方案
- 工程部物業(yè)消防知識培訓(xùn)課件
- 江西省婺源縣聯(lián)考2026屆數(shù)學(xué)七年級第一學(xué)期期末學(xué)業(yè)水平測試試題含解析
- 2025至2030水蛭素產(chǎn)品行業(yè)發(fā)展研究與產(chǎn)業(yè)戰(zhàn)略規(guī)劃分析評估報告
- 非煤礦山安全員題庫及答案解析
評論
0/150
提交評論