版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2020-2021九年級(jí)數(shù)學(xué)平行四邊形的專(zhuān)項(xiàng)培優(yōu)練習(xí)題及詳細(xì)答案一、平行四邊形1.如圖,現(xiàn)有一張邊長(zhǎng)為4的正方形紙片ABCD,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合),將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.(1)求證:∠APB=∠BPH;(2)當(dāng)點(diǎn)P在邊AD上移動(dòng)時(shí),求證:△PDH的周長(zhǎng)是定值;(3)當(dāng)BE+CF的長(zhǎng)取最小值時(shí),求AP的長(zhǎng).【答案】(1)證明見(jiàn)解析.(2)證明見(jiàn)解析.(3)2.【解析】試題分析:(1)根據(jù)翻折變換的性質(zhì)得出∠PBC=∠BPH,進(jìn)而利用平行線的性質(zhì)得出∠APB=∠PBC即可得出答案;(2)首先證明△ABP≌△QBP,進(jìn)而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)過(guò)F作FM⊥AB,垂足為M,則FM=BC=AB,證明△EFM≌△BPA,設(shè)AP=x,利用折疊的性質(zhì)和勾股定理的知識(shí)用x表示出BE和CF,結(jié)合二次函數(shù)的性質(zhì)求出最值.試題解析:(1)解:如圖1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)證明:如圖2,過(guò)B作BQ⊥PH,垂足為Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90°,BP=BP,在△ABP和△QBP中,,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90°,BH=BH,在△BCH和△BQH中,,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周長(zhǎng)為:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周長(zhǎng)是定值.(3)解:如圖3,過(guò)F作FM⊥AB,垂足為M,則FM=BC=AB.又∵EF為折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,在△EFM和△BPA中,,∴△EFM≌△BPA(AAS).∴EM=AP.設(shè)AP=x在Rt△APE中,(4-BE)2+x2=BE2.解得BE=2+,∴CF=BE-EM=2+-x,∴BE+CF=-x+4=(x-2)2+3.當(dāng)x=2時(shí),BE+CF取最小值,∴AP=2.考點(diǎn):幾何變換綜合題.2.已知:在菱形ABCD中,E,F(xiàn)是BD上的兩點(diǎn),且AE∥CF.求證:四邊形AECF是菱形.【答案】見(jiàn)解析【解析】【分析】由菱形的性質(zhì)可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可證△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四邊形的判定和菱形的判定可得四邊形AECF是菱形.【詳解】證明:∵四邊形ABCD是菱形∴AB∥CD,AB=CD,∠ADF=∠CDF,∵AB=CD,∠ADF=∠CDF,DF=DF∴△ADF≌△CDF(SAS)∴AF=CF,∵AB∥CD,AE∥CF∴∠ABE=∠CDF,∠AEF=∠CFE∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD∴△ABE≌△CDF(AAS)∴AE=CF,且AE∥CF∴四邊形AECF是平行四邊形又∵AF=CF,∴四邊形AECF是菱形【點(diǎn)睛】本題主要考查菱形的判定定理,首先要判定其為平行四邊形,這是菱形判定的基本判定.3.已知正方形ABCD中,E為對(duì)角線BD上一點(diǎn),過(guò)E點(diǎn)作EF⊥BD交BC于F,連接DF,G為DF中點(diǎn),連接EG,CG.(1)請(qǐng)問(wèn)EG與CG存在怎樣的數(shù)量關(guān)系,并證明你的結(jié)論;(2)將圖①中△BEF繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,如圖②所示,取DF中點(diǎn)G,連接EG,CG.問(wèn)(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.(3)將圖①中△BEF繞B點(diǎn)旋轉(zhuǎn)任意角度,如圖③所示,再連接相應(yīng)的線段,問(wèn)(1)中的結(jié)論是否仍然成立?(請(qǐng)直接寫(xiě)出結(jié)果,不必寫(xiě)出理由)【答案】(1)證明見(jiàn)解析(2)證明見(jiàn)解析(3)結(jié)論仍然成立【解析】【分析】(1)利用直角三角形斜邊上的中線等于斜邊的一半,可證出CG=EG.(2)結(jié)論仍然成立,連接AG,過(guò)G點(diǎn)作MN⊥AD于M,與EF的延長(zhǎng)線交于N點(diǎn);再證明△DAG≌△DCG,得出AG=CG;再證出△DMG≌△FNG,得到MG=NG;再證明△AMG≌△ENG,得出AG=EG;最后證出CG=EG.(3)結(jié)論依然成立.【詳解】(1)CG=EG.理由如下:∵四邊形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G為DF的中點(diǎn),∴CG=FD,同理.在Rt△DEF中,EG=FD,∴CG=EG.(2)(1)中結(jié)論仍然成立,即EG=CG.證法一:連接AG,過(guò)G點(diǎn)作MN⊥AD于M,與EF的延長(zhǎng)線交于N點(diǎn).在△DAG與△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG與△FNG中,∵∠DGM=∠FGN,F(xiàn)G=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四邊形AENM是矩形,在矩形AENM中,AM=EN.在△AMG與△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.證法二:延長(zhǎng)CG至M,使MG=CG,連接MF,ME,EC.在△DCG與△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE與Rt△CBE中,∵M(jìn)F=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC為直角三角形.∵M(jìn)G=CG,∴EG=MC,∴EG=CG.(3)(1)中的結(jié)論仍然成立.理由如下:過(guò)F作CD的平行線并延長(zhǎng)CG交于M點(diǎn),連接EM、EC,過(guò)F作FN垂直于AB于N.由于G為FD中點(diǎn),易證△CDG≌△MFG,得到CD=FM,又因?yàn)锽E=EF,易證∠EFM=∠EBC,則△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G為CM中點(diǎn),∴EG=CG,EG⊥CG【點(diǎn)睛】本題是四邊形的綜合題.(1)關(guān)鍵是利用直角三角形斜邊上的中線等于斜邊的一半解答;(2)關(guān)鍵是利用了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)、全等三角形的判定和性質(zhì)解答.4.如圖,在△ABC中,∠ACB=90°,∠CAB=30°,以線段AB為邊向外作等邊△ABD,點(diǎn)E是線段AB的中點(diǎn),連接CE并延長(zhǎng)交線段AD于點(diǎn)F.(1)求證:四邊形BCFD為平行四邊形;(2)若AB=6,求平行四邊形ADBC的面積.【答案】(1)見(jiàn)解析;(2)S平行四邊形ADBC=.【解析】【分析】(1)在Rt△ABC中,E為AB的中點(diǎn),則CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因?yàn)椤螧AD=∠ABC=60°,所以AD∥BC,即FD//BC,則四邊形BCFD是平行四邊形.(2)在Rt△ABC中,求出BC,AC即可解決問(wèn)題;【詳解】解:(1)證明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等邊△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E為AB的中點(diǎn),∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E為AB的中點(diǎn),∴CE=AB,BE=AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四邊形BCFD是平行四邊形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=,∴S平行四邊形BCFD=3×=,S△ACF=×3×=,S平行四邊形ADBC=.【點(diǎn)睛】本題考查平行四邊形的判定和性質(zhì)、直角三角形斜邊中線定理、等邊三角形的性質(zhì)、解直角三角形、勾股定理等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題,屬于中考??碱}型.5.(1)(問(wèn)題發(fā)現(xiàn))如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為(2)(拓展研究)在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無(wú)變化?請(qǐng)僅就圖2的情形給出證明;(3)(問(wèn)題發(fā)現(xiàn))當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫(xiě)出線段AF的長(zhǎng).【答案】(1)BE=AF;(2)無(wú)變化;(3)AF的長(zhǎng)為﹣1或+1.【解析】試題分析:(1)先利用等腰直角三角形的性質(zhì)得出AD=,再得出BE=AB=2,即可得出結(jié)論;(2)先利用三角函數(shù)得出,同理得出,夾角相等即可得出△ACF∽△BCE,進(jìn)而得出結(jié)論;(3)分兩種情況計(jì)算,當(dāng)點(diǎn)E在線段BF上時(shí),如圖2,先利用勾股定理求出EF=CF=AD=,BF=,即可得出BE=﹣,借助(2)得出的結(jié)論,當(dāng)點(diǎn)E在線段BF的延長(zhǎng)線上,同前一種情況一樣即可得出結(jié)論.試題解析:(1)在Rt△ABC中,AB=AC=2,根據(jù)勾股定理得,BC=AB=2,點(diǎn)D為BC的中點(diǎn),∴AD=BC=,∵四邊形CDEF是正方形,∴AF=EF=AD=,∵BE=AB=2,∴BE=AF,故答案為BE=AF;(2)無(wú)變化;如圖2,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC=,∴,∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴=,∴BE=AF,∴線段BE與AF的數(shù)量關(guān)系無(wú)變化;(3)當(dāng)點(diǎn)E在線段AF上時(shí),如圖2,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根據(jù)勾股定理得,BF=,∴BE=BF﹣EF=﹣,由(2)知,BE=AF,∴AF=﹣1,當(dāng)點(diǎn)E在線段BF的延長(zhǎng)線上時(shí),如圖3,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC=,∴,∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴=,∴BE=AF,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根據(jù)勾股定理得,BF=,∴BE=BF+EF=+,由(2)知,BE=AF,∴AF=+1.即:當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,線段AF的長(zhǎng)為﹣1或+1.6.(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點(diǎn)E在邊AD上,點(diǎn)G在AD延長(zhǎng)線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)【答案】見(jiàn)解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;應(yīng)用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.∵∠A=∠F,∴∠BCD=∠ECG.∴∠BCD-∠ECD=∠ECG-∠ECD,即∠BCE=∠DCG.在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴BE=DG.應(yīng)用:∵四邊形ABCD為菱形,∴AD∥BC,∵BE=DG,∴S△ABE+S△CDE=S△BEC=S△CDG=8,∵AE=3ED,∴S△CDE=,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.7.如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB上的點(diǎn),且CE=BF.連接DE,過(guò)點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.(1)請(qǐng)判斷:FG與CE的關(guān)系是___;(2)如圖2,若點(diǎn)E,F(xiàn)分別是邊CB,BA延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;(3)如圖3,若點(diǎn)E,F(xiàn)分別是邊BC,AB延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)直接寫(xiě)出你的判斷.【答案】(1)FG=CE,F(xiàn)G∥CE;(2)成立;(3)成立.【解析】試題分析:(1)只要證明四邊形CDGF是平行四邊形即可得出FG=CE,F(xiàn)G∥CE;(2)構(gòu)造輔助線后證明△HGE≌△CED,利用對(duì)應(yīng)邊相等求證四邊形GHBF是矩形后,利用等量代換即可求出FG=C,F(xiàn)G∥CE;(3)證明△CBF≌△DCE后,即可證明四邊形CEGF是平行四邊形.試題解析:解:(1)FG=CE,F(xiàn)G∥CE;(2)過(guò)點(diǎn)G作GH⊥CB的延長(zhǎng)線于點(diǎn)H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE與△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四邊形GHBF是矩形,∴GF=BH,F(xiàn)G∥CH,∴FG∥CE.∵四邊形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;(3)∵四邊形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF與△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四邊形CEGF平行四邊形,∴FG∥CE,F(xiàn)G=CE.8.(1)問(wèn)題發(fā)現(xiàn)如圖1,點(diǎn)E.
F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF、則EF=BE+DF,試說(shuō)明理由;(2)類(lèi)比引申如圖2,在四邊形ABCD中,AB=AD,∠BAD=90°,點(diǎn)E.
F分別在邊BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系時(shí),仍有EF=BE+DF;(3)聯(lián)想拓展如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°,猜想BD、DE、EC滿足的等量關(guān)系,并寫(xiě)出推理過(guò)程?!敬鸢浮浚?)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)詳見(jiàn)解析.【解析】試題分析:(1)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,證出△AFG≌△AFE,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(2)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,證出△AFE≌△AFG,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(3)把△ACE旋轉(zhuǎn)到ABF的位置,連接DF,證明△AFE≌△AFG(SAS),則EF=FG,∠C=∠ABF=45°,△BDF是直角三角形,根據(jù)勾股定理即可作出判斷.試題解析:(1)理由是:如圖1,∵AB=AD,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,如圖1,∵∠ADC=∠B=90°,∴∠FDG=180°,點(diǎn)F.D.G共線,則∠DAG=∠BAE,AE=AG,∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°?45°=45°=∠EAF,即∠EAF=∠FAG,在△EAF和△GAF中,AF=AF,∠EAF=∠GAF,AE=AG,∴△AFG≌△AFE(SAS),∴EF=FG=BE+DF;(2)∠B+∠D=180°時(shí),EF=BE+DF;∵AB=AD,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,如圖2,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC+∠B=180°,∴∠FDG=180°,點(diǎn)F.D.G共線,在△AFE和△AFG中,AE=AG,∠FAE=∠FAG,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF,故答案為:∠B+∠ADC=180°;(3)BD2+CE2=DE2.理由是:把△ACE旋轉(zhuǎn)到ABF的位置,連接DF,則∠FAB=∠CAE.∵∠BAC=90°,∠DAE=45°,∴∠BAD+∠CAE=45°,又∵∠FAB=∠CAE,∴∠FAD=∠DAE=45°,則在△ADF和△ADE中,AD=AD,∠FAD=∠DAE,AF=AE,∴△ADF≌△ADE,∴DF=DE,∠C=∠ABF=45°,∴∠BDF=90°,∴△BDF是直角三角形,∴BD2+BF2=DF2,∴BD2+CE2=DE2.9.如圖,AB為⊙O的直徑,點(diǎn)E在⊙O上,過(guò)點(diǎn)E的切線與AB的延長(zhǎng)線交于點(diǎn)D,連接BE,過(guò)點(diǎn)O作BE的平行線,交⊙O于點(diǎn)F,交切線于點(diǎn)C,連接AC(1)求證:AC是⊙O的切線;(2)連接EF,當(dāng)∠D=°時(shí),四邊形FOBE是菱形.【答案】(1)見(jiàn)解析;(2)30.【解析】【分析】(1)由等角的轉(zhuǎn)換證明出,根據(jù)圓的位置關(guān)系證得AC是⊙O的切線.(2)根據(jù)四邊形FOBE是菱形,得到OF=OB=BF=EF,得證為等邊三角形,而得出,根據(jù)三角形內(nèi)角和即可求出答案.【詳解】(1)證明:∵CD與⊙O相切于點(diǎn)E,∴,∴,又∵,∴,∠OBE=∠COA∵OE=OB,∴,∴,又∵OC=OC,OA=OE,∴,∴,又∵AB為⊙O的直徑,∴AC為⊙O的切線;(2)解:∵四邊形FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴為等邊三角形,∴,而,∴.故答案為30.【點(diǎn)睛】本題主要考查與圓有關(guān)的位置關(guān)系和圓中的計(jì)算問(wèn)題,熟練掌握?qǐng)A的性質(zhì)是本題的解題關(guān)鍵.10.如圖,P是邊長(zhǎng)為1的正方形ABCD對(duì)角線BD上一動(dòng)點(diǎn)(P與B、D不重合),∠APE=90°,且點(diǎn)E在BC邊上,AE交BD于點(diǎn)F.(1)求證:①△PAB≌△PCB;②PE=PC;(2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,的值是否改變?若不變,求出它的值;若改變,請(qǐng)說(shuō)明理由;(3)設(shè)DP=x,當(dāng)x為何值時(shí),AE∥PC,并判斷此時(shí)四邊形PAFC的形狀.【答案】(1)見(jiàn)解析;(2);(3)x=﹣1;四邊形PAFC是菱形.【解析】試題分析:(1)根據(jù)四邊形ABCD是正方形,得出AB=BC,∠ABP=∠CBP°,再根據(jù)PB=PB,即可證出△PAB≌△PCB,②根據(jù)∠PAB+∠PEB=180°,∠PEC+∠PEB=180°,得出∠PEC=∠PCB,從而證出PE=PC;(2)根據(jù)PA=PC,PE=PC,得出PA=PE,再根據(jù)∠APE=90°,得出∠PAE=∠PEA=45°,即可求出;(3)先求出∠CPE=∠PEA=45°,從而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,從而證出BP=BC=1,x=﹣1,再根據(jù)AE∥PC,得出∠AFP=∠BPC=67.5°,由△PAB≌△PCB得出∠BPA=∠BPC=67.5°,PA=PC,從而證出AF=AP=PC,得出答案.試題解析:(1)①∵四邊形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=∠ABC=45°.∵PB=PB,∴△PAB≌△PCB(SAS).②由△PAB≌△PCB可知,∠PAB=∠PCB.∵∠ABE=∠APE=90°,∴∠PAB+∠PEB=180°,又∵∠PEC+∠PEB=180°,∴∠PEC=∠PAB=∠PCB,∴PE=PC.(2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,的值不改變.由△PAB≌△PCB可知,PA=PC.∵PE=PC,∴PA=PE,又∵∠APE=90°,∴△PAE是等腰直角三角形,∠PAE=∠PEA=45°,∴=.(3)∵AE∥PC,∴∠CPE=∠PEA=45°,∴在△PEC中,∠PCE=∠PEC=(180°﹣45°)=67.5°.在△PBC中,∠BPC=(180°﹣∠CBP﹣∠PCE)=(180°﹣45°﹣67.5°)=67.5°.∴∠BPC=∠PCE=67.5°,∴BP=BC=1,∴x=BD﹣BP=﹣1.∵AE∥PC,∴∠AFP=∠BPC=67.5°,由△PAB≌△PCB可知,∠BPA=∠BPC=67.5°,PA=PC,∴∠AFP=∠BPA,∴AF=AP=PC,∴四邊形PAFC是菱形.考點(diǎn):四邊形綜合題.11.在正方形ABCD中,動(dòng)點(diǎn)E,F(xiàn)分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng).(1)如圖①,當(dāng)點(diǎn)E自D向C,點(diǎn)F自C向B移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,請(qǐng)你寫(xiě)出AE與DF的位置關(guān)系,并說(shuō)明理由;(2)如圖②,當(dāng)E,F(xiàn)分別移動(dòng)到邊DC,CB的延長(zhǎng)線上時(shí),連接AE和DF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答“是”或“否”,不須證明)(3)如圖③,當(dāng)E,F(xiàn)分別在邊CD,BC的延長(zhǎng)線上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由;(4)如圖④,當(dāng)E,F(xiàn)分別在邊DC,CB上移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,由于點(diǎn)E,F(xiàn)的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請(qǐng)你畫(huà)出點(diǎn)P運(yùn)動(dòng)路徑的草圖.若AD=2,試求出線段CP的最小值.【答案】(1)AE=DF,AE⊥DF;(2)是;(3)成立,理由見(jiàn)解析;(4)CP=QC﹣QP=.【解析】試題分析:(1)AE=DF,AE⊥DF.先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四邊形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因?yàn)椤螩DF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可證AE=DF,∠DAE=∠CDF,延長(zhǎng)FD交AE于點(diǎn)G,再由等角的余角相等可得AE⊥DF;(4)由于點(diǎn)P在運(yùn)動(dòng)中保持∠APD=90°,所以點(diǎn)P的路徑是一段以AD為直徑的弧,設(shè)AD的中點(diǎn)為Q,連接QC交弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最小,再由勾股定理可得QC的長(zhǎng),再求CP即可.試題解析:(1)AE=DF,AE⊥DF.理由:∵四邊形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.在△ADE和△DCF中,,∴△ADE≌△DCF(SAS).∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可證AE=DF,∠DAE=∠CDF延長(zhǎng)FD交AE于點(diǎn)G,則∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如圖:由于點(diǎn)P在運(yùn)動(dòng)中保持∠APD=90°,∴點(diǎn)P的路徑是一段以AD為直徑的弧,設(shè)AD的中點(diǎn)為Q,連接QC交弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最小,在Rt△QDC中,QC=,∴CP=QC﹣QP=.考點(diǎn):四邊形的綜合知識(shí).12.如圖,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于點(diǎn)H.動(dòng)點(diǎn)E從點(diǎn)B出發(fā),沿線段BC向點(diǎn)C以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng).過(guò)點(diǎn)E作EF⊥AB,垂足為點(diǎn)F.點(diǎn)E出發(fā)后,以EF為邊向上作等邊三角形EFG,設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t秒,△EFG和△AHC的重合部分面積為S.(1)CE=(含t的代數(shù)式表示).(2)求點(diǎn)G落在線段AC上時(shí)t的值.(3)當(dāng)S>0時(shí),求S與t之間的函數(shù)關(guān)系式.(4)點(diǎn)P在點(diǎn)E出發(fā)的同時(shí)從點(diǎn)A出發(fā)沿A-H-A以每秒2個(gè)單位長(zhǎng)度的速度作往復(fù)運(yùn)動(dòng),當(dāng)點(diǎn)E停止運(yùn)動(dòng)時(shí),點(diǎn)P隨之停止運(yùn)動(dòng),直接寫(xiě)出點(diǎn)P在△EFG內(nèi)部時(shí)t的取值范圍.【答案】(1)6-2t;(2)t=2;(3)當(dāng)<t≤2時(shí),S=t2+t-3;當(dāng)2<t≤3時(shí),S=-t2+t-;(4)<t<.【解析】試題分析:(1)由菱形的性質(zhì)得出BC=AB=6得出CE=BC-BE=6-2t即可;(2)由菱形的性質(zhì)和已知條件得出△ABC是等邊三角形,得出∠ACB=60°,由等邊三角形的性質(zhì)和三角函數(shù)得出∠GEF=60°,GE=EF=BE?sin60°=t,證出∠GEC=90°,由三角函數(shù)求出CE==t,由BE+CE=BC得出方程,解方程即可;(3)分兩種情況:①當(dāng)<t≤2時(shí),S=△EFG的面積-△NFN的面積,即可得出結(jié)果;②當(dāng)2<t≤3時(shí),由①的結(jié)果容易得出結(jié)論;(4)由題意得出t=時(shí),點(diǎn)P與H重合,E與H重合,得出點(diǎn)P在△EFG內(nèi)部時(shí),t的不等式,解不等式即可.試題解析:(1)根據(jù)題意得:BE=2t,∵四邊形ABCD是菱形,∴BC=AB=6,∴CE=BC-BE=6-2t;(2)點(diǎn)G落在線段AC上時(shí),如圖1所示:∵四邊形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等邊三角形,∴∠ACB=60°,∵△EFG是等邊三角形,∴∠GEF=60°,GE=EF=BE?sin60°=t,∵EF⊥AB,∴∠BEF=90°-60°=30°,∴∠GEB=90°,∴∠GEC=90°,∴CE==t,∵BE+CE=BC,∴2t+t=6,解得:t=2;(3)分兩種情況:①當(dāng)<t≤2時(shí),如圖2所示:S=△EFG的面積-△NFN的面積=××(t)2-××(-+2)2=t2+t-3,即S=t2+t-3;當(dāng)2<t≤3時(shí),如圖3所示:S=t2+t-3-(3t-6)2,即S=-t2+t-;(4)∵AH=AB?sin60°=6×=3,3÷2=,3÷2=,∴t=時(shí),點(diǎn)P與H重合,E與H重合,∴點(diǎn)P在△EFG內(nèi)部時(shí),-<(t-)×2<t-(2t-3)+(2t-3),解得:<t<;即點(diǎn)P在△EFG內(nèi)部時(shí)t的取值范圍為:<t<.考點(diǎn):四邊形綜合題.13.倡導(dǎo)研究性學(xué)習(xí)方式,著力教材研究,習(xí)題研究,是學(xué)生跳出題海,提高學(xué)習(xí)能力和創(chuàng)新能力的有效途徑.下面是一案例,請(qǐng)同學(xué)們認(rèn)真閱讀、研究,完成“類(lèi)比猜想”的問(wèn)題.習(xí)題如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,說(shuō)明理由.解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADE′,點(diǎn)F、D、E′在一條直線上.∴∠E′AF=90°-45°=45°=∠EAF,又∵AE′=AE,AF=AF∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF.類(lèi)比猜想:(1)請(qǐng)同學(xué)們研究:如圖(2),在菱形ABCD中,點(diǎn)E、F分別在BC、CD上,當(dāng)∠BAD=120°,∠EAF=60°時(shí),還有EF=BE+DF嗎?請(qǐng)說(shuō)明理由.(2)在四邊形ABCD中,點(diǎn)E、F分別在BC、CD上,當(dāng)AB=AD,∠B+∠D=180°,∠EAF=∠BAD時(shí),EF=BE+DF嗎?請(qǐng)說(shuō)明理由.【答案】證明見(jiàn)解析.【解析】試題分析:(1)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°至△ADE′,如圖(2),連結(jié)E′F,根據(jù)菱形和旋轉(zhuǎn)的性質(zhì)得到AE=AE′,∠EAF=∠E′AF,利用“SAS”證明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120°,則點(diǎn)F、D、E′不共線,所以DE′+DF>EF,即由BE+DF>EF;(2)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)∠BAD的度數(shù)至△ADE′,如圖(3),根據(jù)旋轉(zhuǎn)的性質(zhì)得到AE′=AE,∠EAF=∠E′AF,然后利用“SAS”證明△AEF≌△AE′F,得到EF=E′F,由于∠ADE′+∠ADC=180°,知F、D、E′共線,因此有EF=DE′+DF=BE+DF;根據(jù)前面的條件和結(jié)論可歸納出結(jié)論.試題解析:(1)當(dāng)∠BAD=120°,∠EAF=60°時(shí),EF=BE+DF不成立,EF<BE+DF.理由如下:∵在菱形ABCD中,∠BAD=120°,∠EAF=60°,∴AB=AD,∠1+∠2=60°,∠B=∠ADC=60°,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°至△ADE′,如圖(2),連結(jié)E′F,∴∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,∴∠2+∠3=60°,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∵∠ADE′+∠ADC=120°,即點(diǎn)F、D、E′不共線,∴DE′+DF>EF∴BE+DF>EF;(2)當(dāng)AB=AD,∠B+∠D=180°,∠EAF=∠BAD時(shí),EF=BE+DF成立.理由如下:如圖(3),∵AB=AD,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)∠BAD的度數(shù)至△ADE′,如圖(3),∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,∵∠B+∠D=180°,∴∠ADE′+∠D=180°,∴點(diǎn)F、D、E′共線,∵∠EAF=∠BAD,∴∠1+∠2=∠BAD,∴∠2+∠3=∠BAD,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∴EF=DE′+DF=BE+DF;歸納:在四邊形ABCD中,點(diǎn)E、F分別在BC、CD上,當(dāng)AB=AD,∠B+∠D=180°,∠EAF=∠BAD時(shí),EF=BE+DF.考點(diǎn):四邊形綜合題.14.(本題14分)小明在學(xué)習(xí)平行線相關(guān)知識(shí)時(shí)總結(jié)了如下結(jié)論:端點(diǎn)分別在兩條平行線上的所有線段中,垂直于平行線的線段最短.小明應(yīng)用這個(gè)結(jié)論進(jìn)行了下列探索活動(dòng)和問(wèn)題解決.問(wèn)題1:如圖1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P為AC邊上的一動(dòng)點(diǎn),以PB,PA為邊構(gòu)造□APBQ,求對(duì)角線PQ的最小值及PQ最小時(shí)的值.(1)在解決這個(gè)問(wèn)題時(shí),小明構(gòu)造出了如圖2的輔助線,則PQ的最小值為,當(dāng)PQ最小時(shí)=_______;(2)小明對(duì)問(wèn)題1做了簡(jiǎn)單的變式思考.如圖3,P為AB邊上的一動(dòng)點(diǎn),延長(zhǎng)PA到點(diǎn)E,使AE=nPA(n為大于0的常數(shù)).以PE,PC為邊作□PCQE,試求對(duì)角線PQ長(zhǎng)的最小值,并求PQ最小時(shí)的值;問(wèn)題2:在四邊形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如圖4,若為上任意一點(diǎn),以,為邊作□.試求對(duì)角線長(zhǎng)的最小值和PQ最小時(shí)的值.(2)若為上任意一點(diǎn),延長(zhǎng)到,使,再以,為邊作□.請(qǐng)直接寫(xiě)出對(duì)角線長(zhǎng)的最小值和PQ最小時(shí)的值.【答案】問(wèn)題1:(1)3,;(2)PQ=,=.問(wèn)題2:(1)=4,.(2)PQ的最小值為..【解析】試題分
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 執(zhí)行機(jī)關(guān)內(nèi)控制度匯編
- 高職院校內(nèi)控制度
- 建立現(xiàn)金稅費(fèi)內(nèi)控制度
- 項(xiàng)目實(shí)施單位內(nèi)控制度
- 支付結(jié)算內(nèi)控制度
- 財(cái)政部?jī)?nèi)控制度基本制度
- 金融辦工作內(nèi)控制度
- 政府內(nèi)部采購(gòu)內(nèi)控制度
- 街道辦工會(huì)內(nèi)控制度
- xx醫(yī)院內(nèi)控制度
- 高標(biāo)準(zhǔn)農(nóng)田建設(shè)培訓(xùn)課件
- 解答題 概率與統(tǒng)計(jì)(專(zhuān)項(xiàng)訓(xùn)練12大題型+高分必刷)(原卷版)2026年高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)
- 2024-2025學(xué)年北京市海淀區(qū)第二十中學(xué)高二上學(xué)期期末物理試題(含答案)
- 送你一朵小紅花評(píng)語(yǔ)
- 2025至2030中國(guó)IT培訓(xùn)行業(yè)項(xiàng)目調(diào)研及市場(chǎng)前景預(yù)測(cè)評(píng)估報(bào)告
- 2025年國(guó)家開(kāi)放大學(xué)《普通心理學(xué)(研究生)》期末考試參考題庫(kù)及答案解析
- 多聯(lián)機(jī)空調(diào)安裝施工方案
- 2025秋期版國(guó)開(kāi)河南電大專(zhuān)科《公務(wù)員制度講座》一平臺(tái)我要考試無(wú)紙化考試試題及答案
- 2025年三亞塑料包裝材料項(xiàng)目可行性研究報(bào)告
- 2025年證券從業(yè)資格考試試卷及參考答案
- 2025貴州銅仁市公開(kāi)招聘專(zhuān)業(yè)化管理村黨組織書(shū)記43人考試參考題庫(kù)及答案解析
評(píng)論
0/150
提交評(píng)論