版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆黑龍江省雞西市一中高三數學第一學期期末經典試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,若,則下列不等關系正確的是()A. B.C. D.2.已知雙曲線的左右焦點分別為,,以線段為直徑的圓與雙曲線在第二象限的交點為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.3.如圖,在直三棱柱中,,,點分別是線段的中點,,分別記二面角,,的平面角為,則下列結論正確的是()A. B. C. D.4.的展開式中,滿足的的系數之和為()A. B. C. D.5.的展開式中的系數是-10,則實數()A.2 B.1 C.-1 D.-26.設,且,則()A. B. C. D.7.在中,角的對邊分別為,,若,,且,則的面積為()A. B. C. D.8.已知向量,夾角為,,,則()A.2 B.4 C. D.9.已知向量,,=(1,),且在方向上的投影為,則等于()A.2 B.1 C. D.010.設為自然對數的底數,函數,若,則()A. B. C. D.11.正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側棱長為,則它的外接球的表面積為()A. B. C. D.12.設函數在上可導,其導函數為,若函數在處取得極大值,則函數的圖象可能是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,斜率為2的直線與的交點為,若,則直線的方程為___________.14.如果拋物線上一點到準線的距離是6,那么______.15.平面直角坐標系中,O為坐標原點,己知A(3,1),B(-1,3),若點C滿足,其中α,β∈R,且α+β=1,則點C的軌跡方程為16.已知復數(為虛數單位),則的模為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)平面直角坐標系中,曲線:.直線經過點,且傾斜角為,以為極點,軸正半軸為極軸,建立極坐標系.(1)寫出曲線的極坐標方程與直線的參數方程;(2)若直線與曲線相交于,兩點,且,求實數的值.18.(12分)已知數列滿足.(1)求數列的通項公式;(2)設數列的前項和為,證明:.19.(12分)選修4-5:不等式選講已知函數.(1)設,求不等式的解集;(2)已知,且的最小值等于,求實數的值.20.(12分)已知拋物線的焦點也是橢圓的一個焦點,與的公共弦的長為.(1)求的方程;(2)過點的直線與相交于、兩點,與相交于、兩點,且與同向,設在點處的切線與軸的交點為,證明:直線繞點旋轉時,總是鈍角三角形;(3)為上的動點,、為長軸的兩個端點,過點作的平行線交橢圓于點,過點作的平行線交橢圓于點,請問的面積是否為定值,并說明理由.21.(12分)在四棱柱中,底面為正方形,,平面.(1)證明:平面;(2)若,求二面角的余弦值.22.(10分)已知,函數的最小值為1.(1)證明:.(2)若恒成立,求實數的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
利用函數的單調性得到的大小關系,再利用不等式的性質,即可得答案.【詳解】∵在R上單調遞增,且,∴.∵的符號無法判斷,故與,與的大小不確定,對A,當時,,故A錯誤;對C,當時,,故C錯誤;對D,當時,,故D錯誤;對B,對,則,故B正確.故選:B.【點睛】本題考查分段函數的單調性、不等式性質的運用,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎題.2、B【解析】
先設直線與圓相切于點,根據題意,得到,再由,根據勾股定理求出,從而可得漸近線方程.【詳解】設直線與圓相切于點,因為是以圓的直徑為斜邊的圓內接三角形,所以,又因為圓與直線的切點為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【點睛】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質即可,屬于常考題型.3、D【解析】
過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法求解二面角的余弦值得答案.【詳解】解:因為,,所以,即過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標系,則,0,,,,,,0,,,1,,,,,,,設平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.【點睛】本題考查二面角的大小的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,屬于中檔題.4、B【解析】
,有,,三種情形,用中的系數乘以中的系數,然后相加可得.【詳解】當時,的展開式中的系數為.當,時,系數為;當,時,系數為;當,時,系數為;故滿足的的系數之和為.故選:B.【點睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關鍵.5、C【解析】
利用通項公式找到的系數,令其等于-10即可.【詳解】二項式展開式的通項為,令,得,則,所以,解得.故選:C【點睛】本題考查求二項展開式中特定項的系數,考查學生的運算求解能力,是一道容易題.6、C【解析】
將等式變形后,利用二次根式的性質判斷出,即可求出的范圍.【詳解】即故選:C【點睛】此題考查解三角函數方程,恒等變化后根據的關系即可求解,屬于簡單題目.7、C【解析】
由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點睛】本題考查了向量共線定理、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.8、A【解析】
根據模長計算公式和數量積運算,即可容易求得結果.【詳解】由于,故選:A.【點睛】本題考查向量的數量積運算,模長的求解,屬綜合基礎題.9、B【解析】
先求出,再利用投影公式求解即可.【詳解】解:由已知得,由在方向上的投影為,得,則.故答案為:B.【點睛】本題考查向量的幾何意義,考查投影公式的應用,是基礎題.10、D【解析】
利用與的關系,求得的值.【詳解】依題意,所以故選:D【點睛】本小題主要考查函數值的計算,屬于基礎題.11、C【解析】
如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設球半徑為,則,解得,故.故選:.【點睛】本題考查了四棱錐的外接球問題,意在考查學生的空間想象能力和計算能力.12、B【解析】
由題意首先確定導函數的符號,然后結合題意確定函數在區(qū)間和處函數的特征即可確定函數圖像.【詳解】函數在上可導,其導函數為,且函數在處取得極大值,當時,;當時,;當時,.時,,時,,當或時,;當時,.故選:【點睛】根據函數取得極大值,判斷導函數在極值點附近左側為正,右側為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設直線l的方程為,,聯立直線l與拋物線C的方程,得到A,B點橫坐標的關系式,代入到中,解出t的值,即可求得直線l的方程【詳解】設直線.由題設得,故,由題設可得.
由可得,
則,從而,得,所以l的方程為,故答案為:【點睛】本題主要考查了直線的方程,拋物線的定義,拋物線的簡單幾何性質,直線與拋物線的位置關系,屬于中檔題.14、【解析】
先求出拋物線的準線方程,然后根據點到準線的距離為6,列出,直接求出結果.【詳解】拋物線的準線方程為,由題意得,解得.∵點在拋物線上,∴,∴,故答案為:.【點睛】本小題主要考查拋物線的定義,屬于基礎題.15、【解析】
根據向量共線定理得A,B,C三點共線,再根據點斜式得結果【詳解】因為,且α+β=1,所以A,B,C三點共線,因此點C的軌跡為直線AB:【點睛】本題考查向量共線定理以及直線點斜式方程,考查基本分析求解能力,屬中檔題.16、【解析】,所以.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(t為參數);(Ⅱ)或或.【解析】
試題分析:本題主要考查極坐標方程、參數方程與直角方程的相互轉化、直線與拋物線的位置關系等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,用,化簡表達式,得到曲線的極坐標方程,由已知點和傾斜角得到直線的參數方程;第二問,直線方程與曲線方程聯立,消參,解出的值.試題解析:(1)即,.(2),符合題意考點:本題主要考查:1.極坐標方程,參數方程與直角方程的相互轉化;2.直線與拋物線的位置關系.18、(1);(2)見解析.【解析】
(1)令,,利用可求得數列的通項公式,由此可得出數列的通項公式;(2)求得,利用裂項相消法求得,進而可得出結論.【詳解】(1)令,,當時,;當時,,則,故;(2),.【點睛】本題考查利用求通項,同時也考查了裂項相消法求和,考查計算能力與推理能力,屬于基礎題.19、(1)(2)【解析】
(1)把f(x)去絕對值寫成分段函數的形式,分類討論,分別求得解集,綜合可得結論.(2)把f(x)去絕對值寫成分段函數,畫出f(x)的圖像,找出利用條件求得a的值.【詳解】(1)時,.當時,即為,解得.當時,,解得.當時,,解得.綜上,的解集為.(2).,由的圖象知,,.【點睛】本題主要考查含絕對值不等式的解法及含絕對值的函數的最值問題,體現了分類討論的數學思想,屬于中檔題20、(1);(2)證明見解析;(3)是,理由見解析.【解析】
(1)根據兩個曲線的焦點相同,得到,再根據與的公共弦長為得出,可求出和的值,進而可得出曲線的方程;(2)設點,根據導數的幾何意義得到曲線在點處的切線方程,求出點的坐標,利用向量的數量積得出,則問題得以證明;(3)設直線,直線,、、,推導出以及,求出和,通過化簡計算可得出為定值,進而可得出結論.【詳解】(1)由知其焦點的坐標為,也是橢圓的一個焦點,,①又與的公共弦的長為,與都關于軸對稱,且的方程為,由此易知與的公共點的坐標為,,②聯立①②,得,,故的方程為;(2)如圖,,由得,在點處的切線方程為,即,令,得,即,,而,于是,因此是銳角,從而是鈍角.故直線繞點旋轉時,總是鈍角三角形;(3)設直線,直線,、、,則,設向量和的夾角為,則的面積為,由,可得,同理可得,故有.又,故,則,因此,的面積為定值.【點睛】本題考查了圓錐曲線的和直線的位置與關系,考查鈍角三角形的判定以及三角形面積為定值的求解,關鍵是聯立方程,構造方程,利用韋達定理,以及向量的關系,得到關于斜率的方程,計算量大,屬于難題.21、(1)詳見解析;(2).【解析】
(1)連接,設,可證得四邊形為平行四邊形,由此得到,根據線面平行判定定理可證得結論;(2)以為原點建立空間直角坐標系,利用二面角的空間向量求法可求得結果.【詳解】(1)連接,設,連接,在四棱柱中,分別為的中點,,四邊形為平行四邊形,,平面,平面,平面.(2)以為原點,所在直線分別為軸建立空間直角坐標系.設,四邊形為正方形,,,則,,,,,,,設為平面的法向量,為平面的法向量,由得:,令,則,,由得:,令,則,,,,,二面角為銳二面角,二面角的余弦值為.【點睛】本題考查立體幾何中線面平行關系的證明、空間向量法求解二面角的問題;關鍵是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東兒童監(jiān)護制度規(guī)范
- 用字規(guī)范化教學評優(yōu)制度
- 居家陪護服務制度規(guī)范
- 視頻談判室工作制度規(guī)范
- 律師到場制度規(guī)范要求
- 監(jiān)控室領導查崗制度規(guī)范
- 五金配件維修制度規(guī)范
- 長途運輸管理規(guī)范化制度
- 健全部門制度流程規(guī)范
- 法院關于聘用制書記員管理制度改革調研
- 高中數學選擇性必修一課件第一章 空間向量與立體幾何章末復習(人教A版)
- 標準商品房買賣合同文本大全
- LY/T 3408-2024林下經濟術語
- 2025年湖南邵陽市新邵縣經濟開發(fā)區(qū)建設有限公司招聘筆試參考題庫附帶答案詳解
- ICH《M10:生物分析方法驗證及樣品分析》
- 國家開放大學電大24210丨學前兒童科學教育活動指導(統設課)期末終考題庫
- 【讀后續(xù)寫】2021年11月稽陽聯考讀后續(xù)寫講評:Saving the Daisies 名師課件-陳星可
- 教育培訓班項目可行性研究報告
- 人參健康食品營銷策劃
- 2024年人參項目營銷策劃方案
- 工會職工大會制度實施細則范本
評論
0/150
提交評論