版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省杭州八中2026屆高二上數(shù)學(xué)期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是等差數(shù)列,,,則公差為()A.6 B.C. D.22.過橢圓右焦點作x軸的垂線,并交C于A,B兩點,直線l過C的左焦點和上頂點.若以線段AB為直徑的圓與有2個公共點,則C的離心率e的取值范圍是()A. B.C. D.3.設(shè)雙曲線C:的左、右焦點分別為,點P在雙曲線C上,若線段的中點在y軸上,且為等腰三角形,則雙曲線C的離心率為()A. B.2C. D.4.下列函數(shù)是偶函數(shù)且在上是減函數(shù)的是A. B.C. D.5.已知直線和互相垂直,則實數(shù)的值為()A. B.C.或 D.6.如圖,在四面體OABC中,,,,點在線段上,且,為的中點,則等于()A. B.C. D.7.已知是定義在上的奇函數(shù),對任意兩個不相等的正數(shù)、都有,記,,,則()A. B.C. D.8.已知,則()A. B.C. D.9.如圖,空間四邊形OABC中,,,,點M在上,且滿足,點N為BC的中點,則()A. B.C. D.10.日常飲用水通常都是經(jīng)過凈化的,隨若水純凈度的提高,所需凈化費用不斷增加.已知水凈化到純凈度為時所需費用單位:元為那么凈化到純凈度為時所需凈化費用的瞬時變化率是()元/t.A. B.C. D.11.直線:和圓的位置關(guān)系是()A.相離 B.相切或相交C.相交 D.相切12.等比數(shù)列的前項和為,若,則()A. B.8C.1或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知為直線上的動點,為函數(shù)圖象上的動點,則的最小值為______14.已知、是橢圓()長軸的兩個端點,、是橢圓上關(guān)于軸對稱的兩點,直線,的斜率分別為,().若橢圓的離心率為,則的最小值為______15.等軸(實軸長與虛軸長相等)雙曲線的離心率_______16.已知拋物線:上有兩動點,,且,則線段的中點到軸距離的最小值是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知二次曲線的方程:(1)分別求出方程表示橢圓和雙曲線的條件;(2)若雙曲線與直線有公共點且實軸最長,求雙曲線方程;(3)為正整數(shù),且,是否存在兩條曲線,其交點P與點滿足,若存在,求的值;若不存在,說明理由18.(12分)已知函數(shù).(1)若,討論函數(shù)的單調(diào)性;(2)當(dāng)時,求在區(qū)間上的最小值和最大值.19.(12分)已知拋物線的焦點為F,以F和準(zhǔn)線上的兩點為頂點的三角形是邊長為的等邊三角形,過的直線交拋物線E于A,B兩點(1)求拋物線E的方程;(2)是否存在常數(shù),使得,如果存在,求的值,如果不存在,請說明理由;(3)證明:內(nèi)切圓的面積小于20.(12分)如圖,四棱柱的底面為正方形,平面,,,點在上,且.(1)求證:;(2)求直線與平面所成角的正弦值;(3)求平面與平面夾角的余弦值.21.(12分)已知等差數(shù)列的前項和為,滿足,.(1)求數(shù)列的通項公式與前項和;(2)求的值.22.(10分)已知函數(shù).(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)在其定義域上是增函數(shù),求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)的首項為,把已知的兩式相減即得解.【詳解】解:設(shè)的首項為,根據(jù)題意得,兩式相減得.故選:C2、A【解析】求得以為直徑的圓的圓心和半徑,求得直線的方程,利用圓心到直線的距離小于半徑列不等式,化簡后求得橢圓離心率的取值范圍.【詳解】橢圓的左焦點,右焦點,上頂點,,所以為直徑的圓的圓心為,半徑為.直線的方程為,由于以線段為直徑的圓與相交,所以,,,,,所以橢圓的離心率的取值范圍是.故選:A3、A【解析】根據(jù)是等腰直角三角形,再表示出的長,利用三角形的幾何性質(zhì)即可求得答案.【詳解】線段的中點在y軸上,設(shè)的中點為M,因為O為的中點,所以,而,則,為等腰三角形,故,由,得,又為等腰直角三角形,故,即,解得,即,故選:A.4、C【解析】根據(jù)題意,依次分析選項中函數(shù)的奇偶性與單調(diào)性,綜合即可得答案【詳解】根據(jù)題意,依次分析選項:對于A,為一次函數(shù),不是偶函數(shù),不符合題意;對于B,,,為奇函數(shù),不是偶函數(shù),不符合題意;對于C,,為二次函數(shù),是偶函數(shù)且在上是減函數(shù),符合題意;對于D,,,為奇函數(shù),不是偶函數(shù),不符合題意;故選C【點睛】本題考查函數(shù)的奇偶性與單調(diào)性的判定,關(guān)鍵是掌握常見函數(shù)的奇偶性與單調(diào)性,屬于基礎(chǔ)題5、B【解析】由兩直線垂直可得出關(guān)于實數(shù)的等式,求解即可.【詳解】由已知可得,解得.故選:B.6、D【解析】利用空間向量的加法與減法可得出關(guān)于、、的表達式.【詳解】.故選:D.7、A【解析】由題,可得是定義在上的偶函數(shù),且在上單調(diào)遞減,在上單調(diào)遞增,根據(jù)函數(shù)的單調(diào)性,即可判斷出的大小關(guān)系.【詳解】設(shè),由題,得,即,所以函數(shù)在上單調(diào)遞減,因為是定義在R上的奇函數(shù),所以是定義在上的偶函數(shù),因此,,,即.故選:A【點睛】本題主要考查利用函數(shù)的單調(diào)性判斷大小的問題,其中涉及到構(gòu)造函數(shù)的運用.8、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式及求導(dǎo)法則求導(dǎo)函數(shù)即可.【詳解】.故選:B.9、B【解析】由空間向量的線性運算求解【詳解】由題意,又,,,∴,故選:B10、B【解析】由題意求出函數(shù)的導(dǎo)函數(shù),然后令即可求解【詳解】因為,所以,則,故選:11、C【解析】直線l:y﹣1=k(x﹣1)恒過點(1,1),且點(1,1)在圓上,直線的斜率存在,故可知直線l:y﹣1=k(x﹣1)和圓C:x2+y2﹣2y=0的關(guān)系【詳解】圓C:x2+y2﹣2y=0可化為x2+(y﹣1)2=1∴圓心為(0,1),半徑為1∵直線l:y﹣1=k(x﹣1)恒過點(1,1),且點(1,1)在圓上且直線的斜率存在∴直線l:y﹣1=k(x﹣1)和圓C:x2+y2﹣2y=0的關(guān)系是相交,故選C【點睛】本題考查的重點是直線與圓的位置關(guān)系,解題的關(guān)鍵是確定直線恒過定點,此題易誤選B,忽視直線的斜率存在12、C【解析】根據(jù)等比數(shù)列的前項和公式及等比數(shù)列通項公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,則因為,所以,即,解得或,所以或.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求得的導(dǎo)數(shù),由題意可得與直線平行的直線和曲線相切,然后求出的值最小,設(shè)出切點,求出切線方程,再由兩直線平行的距離公式,得到的最小值【詳解】解:函數(shù)的導(dǎo)數(shù)為,設(shè)與直線平行的直線與曲線相切,設(shè)切點為,則,所以,所以,所以,所以,所以切線方程為,可得的最小值為,故答案為:14、【解析】設(shè)出點,,,的坐標(biāo),表示出直線,的斜率,作和后利用基本不等式求最值,利用離心率求得與的關(guān)系,則答案可求詳解】解:設(shè),,,,,,,,,,,當(dāng)且僅當(dāng),即時等號成立,是橢圓長軸的兩個端點,,是橢圓上關(guān)于軸對稱的兩點,,,即,的最小值為,橢圓的離心率為,,即,得,的最小值為故答案為:15、【解析】由題意可知,,由,化簡可求離心率.【詳解】由題意可知,,兩邊同時平方,得,即,,所以離心率,故答案為:.16、2【解析】設(shè)拋物線的焦點為,由,結(jié)合拋物線的定義可得線段的中點到軸距離的最小值.【詳解】設(shè)拋物線的焦點為,點在拋物線的準(zhǔn)線上的投影為,點在直線上的投影為,線段的中點為,點到軸的距離為,則,∴,當(dāng)且僅當(dāng)即三點共線時等號成立,∴線段的中點到軸距離的最小值是2,故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)時,方程表示橢圓,時,方程表示雙曲線;(2);(3)存在,且或或.【解析】(1)當(dāng)且僅當(dāng)分母都為正,且不相等時,方程表示橢圓;當(dāng)且僅當(dāng)分母異號時,方程表示雙曲線(2)將直線與曲線聯(lián)立化簡得:,利用雙曲線與直線有公共點,可確定的范圍,從而可求雙曲線的實軸,進而可得雙曲線方程;(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì),任意兩橢圓之間無公共點,任意兩雙曲線之間無公共點,從而可求【詳解】(1)當(dāng)且僅當(dāng)時,方程表示橢圓;當(dāng)且僅當(dāng)時,方程表示雙曲線(2)化簡得:△或所以雙曲線的實軸為,當(dāng)時,雙曲線實軸最長為此時雙曲線方程為(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì)任意兩橢圓之間無公共點,任意兩雙曲線之間無公共點設(shè),,,2,,,6,7,由橢圓與雙曲線定義及;所以所以這樣的,存在,且或或【點睛】方法點睛:曲線方程的確定可分為兩類:若已知曲線類型,則采用待定系數(shù)法;若曲線類型未知時,則可利用直接法、定義法、相關(guān)點法等求解或者利用分類討論思想求解.18、(1)在和上單調(diào)遞增,在上單調(diào)遞減.(2)答案見解析.【解析】(1)求解導(dǎo)函數(shù),并求出的兩根,得和的解集,從而得函數(shù)單調(diào)性;(2)由(1)得函數(shù)的單調(diào)性,從而得最小值,計算,再分類討論與兩種情況下的最大值.【小問1詳解】函數(shù)定義域為,,時,或,因為,所以,時,或,時,,所以函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減.【小問2詳解】因為,由(1)知,在上單調(diào)遞減,在上單調(diào)遞增,所以最小值為,又因為,當(dāng)時,,此時最小值為,最大值為;當(dāng)時,,此時最小值為,最大值為.【點睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識點,對導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個角度進行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應(yīng)用19、(1);(2)存在,1;(3)證明見解析.【解析】(1)根據(jù)幾何關(guān)系即可求p;(2)求解為定值1,即可求λ=1;(3)先求的面積,再由(為三角周長)可求內(nèi)切圓半徑r.【小問1詳解】由題意焦點到準(zhǔn)線的距離等于該正三角形一條邊上的高線,因此,∴拋物線E的方程為【小問2詳解】設(shè)直線的斜率為,直線方程為,記,,消去,得由,得且,,,,因此,即存在實數(shù)滿足要求【小問3詳解】由(2)知,,點F到直線AB的距離,∴的面積記的內(nèi)切圓半徑為r,∵,∴∴內(nèi)切圓的面積小于20、(1)證明見解析(2)(3)【解析】(1)以為原點,所在的直線為軸的正方向建立空間直角坐標(biāo)系,求出平面的一個法向量可得,即平面,再由線面垂直的性質(zhì)可得答案;(2)設(shè)直線與平面所成角的為,可得答案;(3)由二面角的向量求法可得答案.【小問1詳解】以為原點,所在的直線為軸的正方向建立空間直角坐標(biāo)系,則,,,,,所以,,,設(shè)平面的一個法向量為,所以,即,令,則,所以,所以,所以平面,平面,所以.【小問2詳解】,所以,由(1)平面的一個法向量為,設(shè)直線與平面所成角的為,所以直線與平面所成角的正弦值.【小問3詳解】由已知為平面的一個法向量,且,由(1)平面的一個法向量為,所以,由圖可得平面與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消防安全知識培訓(xùn)考試卷及答案(供參考)
- 新入崗進修生等醫(yī)院感染防控培訓(xùn)考核試題及答案
- 物業(yè)管理員高級模擬試題與答案
- 社區(qū)考試筆試題庫及答案
- 工程監(jiān)理自考試卷及答案
- 財會管理考試題及答案
- 人體生理學(xué)各章節(jié)復(fù)習(xí)題及答案(X頁)
- 檢驗技師考試《臨床檢驗基礎(chǔ)》試題及答案
- 昆明市祿勸彝族苗族自治縣輔警公共基礎(chǔ)知識題庫(附答案)
- 茶藝師茶史講解題庫及答案
- 云南省2026年普通高中學(xué)業(yè)水平選擇性考試調(diào)研測試歷史試題(含答案詳解)
- GB 4053.3-2025固定式金屬梯及平臺安全要求第3部分:工業(yè)防護欄桿及平臺
- 2026中央廣播電視總臺招聘124人參考筆試題庫及答案解析
- JG/T 3030-1995建筑裝飾用不銹鋼焊接管材
- 項目管理學(xué)課件戚安邦全
- 羽毛球二級裁判員試卷
- 通風(fēng)與空調(diào)監(jiān)理實施細(xì)則abc
- JJF 1614-2017抗生素效價測定儀校準(zhǔn)規(guī)范
- GB/T 5237.3-2017鋁合金建筑型材第3部分:電泳涂漆型材
- GB/T 3625-2007換熱器及冷凝器用鈦及鈦合金管
- GA 1016-2012槍支(彈藥)庫室風(fēng)險等級劃分與安全防范要求
評論
0/150
提交評論