2026屆廣東深圳平湖外國語學校高二上數(shù)學期末考試試題含解析_第1頁
2026屆廣東深圳平湖外國語學校高二上數(shù)學期末考試試題含解析_第2頁
2026屆廣東深圳平湖外國語學校高二上數(shù)學期末考試試題含解析_第3頁
2026屆廣東深圳平湖外國語學校高二上數(shù)學期末考試試題含解析_第4頁
2026屆廣東深圳平湖外國語學校高二上數(shù)學期末考試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆廣東深圳平湖外國語學校高二上數(shù)學期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)直線與的圖象相交于A、B兩點,則的最小值為()A.3 B.C. D.2.命題“,”否定形式是()A., B.,C., D.,3.已知二次函數(shù)交軸于,兩點,交軸于點.若圓過,,三點,則圓的方程是()A. B.C. D.4.古希臘數(shù)學家阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)且的點的軌跡是圓,后人將之稱為阿波羅尼斯圓.現(xiàn)有橢圓為橢圓長軸的端點,為橢圓短軸的端點,,分別為橢圓的左右焦點,動點滿足面積的最大值為面積的最小值為,則橢圓的離心率為()A. B.C. D.5.是橢圓的焦點,點在橢圓上,點到的距離為1,則到的距離為()A.3 B.4C.5 D.66.等比數(shù)列的各項均為正數(shù),且,則A. B.C. D.7.若兩定點A,B的距離為3,動點M滿足,則M點的軌跡圍成區(qū)域的面積為()A. B.C. D.8.已知點P在拋物線上,點Q在圓上,則的最小值為()A. B.C. D.9.拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結(jié)論中正確的為()A.與互為對立事件 B.與互斥C.與相等 D.10.球O為三棱錐的外接球,和都是邊長為的正三角形,平面PBC平面ABC,則球的表面積為()A. B.C. D.11.展開式的第項為()A. B.C. D.12.已知雙曲線E的漸近線為,則其離心率為()A. B.C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.某n重伯努利試驗中,事件A發(fā)生的概率為p,事件A發(fā)生的次數(shù)記為X,,,則______14.直線被圓所截得的弦的長為_____15.已知數(shù)列的前項和為,且,若點在直線上,則______;______.16.某工廠年前加緊手套生產(chǎn),設(shè)該工廠連續(xù)5天生產(chǎn)的手套數(shù)依次為,,,,(單位:萬只),若這組數(shù)據(jù),,,,的方差為4,且,,,,的平均數(shù)為8,則該工廠這5天平均每天生產(chǎn)手套______萬只三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C與橢圓有相同的焦點,且長軸長為4(1)求C的標準方程;(2)直線,分別經(jīng)過點與C相切,切點分別為A,B,證明:18.(12分)在等差數(shù)列中,,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和.19.(12分)已知橢圓與橢圓有共同的焦點,且橢圓經(jīng)過點.(1)求橢圓的標準方程;(2)設(shè)為橢圓的左焦點,為橢圓上任意一點,為坐標原點,求的最小值.20.(12分)某港口船舶停靠的方案是先到先停,且每次只能??恳凰掖?(1)若甲乙兩艘船同時到達港口,雙方約定各派一名代表猜拳:從1,2,3,4,5中各隨機選一個數(shù),若兩數(shù)之和為奇數(shù),則甲先??浚蝗魞蓴?shù)之和為偶數(shù),則乙先停靠,這種方式對雙方是否公平?請說明理由;(2)若甲、乙兩船在一晝夜內(nèi)到達該碼頭的時刻是等可能的.如果甲船停泊時間為1h,乙船停泊時間為2h,求它們中的任意一艘都不需要等待碼頭空出的概率.21.(12分)已知定點,動點滿足,設(shè)點的軌跡為.(1)求軌跡的方程;(2)若點分別是圓和軌跡上的點,求兩點間的最大距離.22.(10分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)試討論函數(shù)的單調(diào)性.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先求出AB坐標,表示出,規(guī)定函數(shù),其中,利用導數(shù)求最小值.【詳解】聯(lián)立解得可得點.聯(lián)立解得可得點.由題意可得解得,令,其中,∴.∴函數(shù)單調(diào)遞減;.因此,的最小值為故選:C【點睛】距離的最值求解:(1)幾何法求最值;(2)代數(shù)法:表示出距離,利用函數(shù)求最值.2、C【解析】利用含有一個量詞的命題的否定的定義求解.【詳解】因為命題“,是特稱命題,所以其否定是全稱命題,即為,故選:C3、C【解析】由已知求得點A、B、C的坐標,則有AB的垂直平分線必過圓心,所以設(shè)圓的圓心為,由,可求得圓M的半徑和圓心,由此求得圓的方程.【詳解】解:由解得或,所以,又令,得,所以,因為圓過,,三點,所以AB的垂直平分線必過圓心,所以設(shè)圓的圓心為,所以,即,解得,所以圓心,半徑,所以圓的方程是,即,故選:C4、A【解析】由題可得動點M的軌跡方程,可得,,即求.【詳解】設(shè),,由,可得=2,化簡得.∵△MAB面積的最大值為面積的最小值為,∴,,∴,即,∴故選:A5、C【解析】利用橢圓的定義直接求解【詳解】由題意得,得,因為,,所以,故選:C6、B【解析】根據(jù)等比數(shù)列的性質(zhì),結(jié)合已知條件,求得,進而求得的值.【詳解】由于數(shù)列是等比數(shù)列,故,所以,故.故選B.【點睛】本小題主要考查等比數(shù)列的性質(zhì),考查對數(shù)運算,屬于基礎(chǔ)題.7、D【解析】以點A為坐標原點,射線AB為x軸的非負半軸建立直角坐標系,求出點M的軌跡方程即可計算得解.【詳解】以點A為坐標原點,射線AB為x軸的非負半軸建立直角坐標系,如圖,設(shè)點,則,化簡并整理得:,于是得點M的軌跡是以點為圓心,2為半徑的圓,其面積為,所以M點的軌跡圍成區(qū)域的面積為.故選:D8、C【解析】先計算拋物線上的點P到圓心距離的最小值,再減去半徑即可.【詳解】設(shè),由圓心,得,∴時,,∴故選:C.9、D【解析】利用互斥事件和對立事件的定義分析判斷即可【詳解】因為拋擲兩枚質(zhì)地均勻的硬幣包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣正面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上,4種情況,其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,所以與不互斥,也不對立,也不相等,,所以ABC錯誤,D正確,故選:D10、B【解析】取中點為T,以及的外心為,的外心為,依據(jù)平面平面可知為正方形,然后計算外接球半徑,最后根據(jù)球表面積公式計算.【詳解】設(shè)中點為T,的外心為,的外心為,如圖由和均為邊長為的正三角形則和的外接圓半徑為,又因為平面PBC平面ABC,所以平面,可知且,過分別作平面、平面的垂線相交于點即為三棱錐的外接球的球心,且四邊形是邊長為的正方形,所以外接球半徑,則球的表面積為,故選:B11、B【解析】由展開式的通項公式求解即可【詳解】因為,所以展開式的第項為,故選:B12、D【解析】根據(jù)雙曲線標準方程與漸近線的關(guān)系即可求解.【詳解】當雙曲線焦點在x軸上時,漸近線為,故離心率為;當雙曲線焦點在y軸上時,漸近線為,故離心率為;故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##0.2【解析】根據(jù)二項分布的均值和方差的計算公式可求解【詳解】依題意得X服從二項分布,則,解得,故答案為:14、【解析】圓轉(zhuǎn)化為標準式方程,圓心到直線的距離為,圓的半徑為,因此所求弦長為考點:1.圓的方程;2.直線被圓截得的弦長的求法;15、①.;②.【解析】根據(jù)等差數(shù)列的定義,結(jié)合等差數(shù)列前項和公式、裂項相消法進行求解即可.【詳解】因為點在直線上,所以,所以數(shù)列是以,公差為的等差數(shù)列,所以;因為,所以,于是,故答案為:;16、2【解析】結(jié)合方差、平均數(shù)的公式列方程,化簡求得正確答案.【詳解】依題意設(shè),則,.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)根據(jù)共焦點求出參數(shù)c,由長軸長求參數(shù)a,即可確定C的標準方程;(2)令過切線為,聯(lián)立橢圓C結(jié)合得到關(guān)于k的一元二次方程,根據(jù)根與系數(shù)關(guān)系即可證明結(jié)論.【小問1詳解】由題設(shè),對于橢圓C有,又橢圓的焦點為,則,所以,故C的標準方程.【小問2詳解】由題設(shè),直線,的斜率必存在,令橢圓C的切線方程為,聯(lián)立橢圓方程并整理可得:,由相切關(guān)系知:,整理得:,所以,即直線,相互垂直,則.18、(1)(2)【解析】(1)根據(jù)已知條件求得,由此求得數(shù)列的通項公式.(2)令,分和去掉絕對值,根據(jù)等差數(shù)列的求和公式求得.【小問1詳解】設(shè)等差數(shù)列的公差為,∵,,所以,所以,則.【小問2詳解】令,解得,當時,,,當時,.19、(1)(2)【解析】(1)設(shè)橢圓的方程為,將點的坐標代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)設(shè)點,則,且,利用平面向量數(shù)量積的坐標運算結(jié)合二次函數(shù)的基本性質(zhì)可求得的最小值.【小問1詳解】(1)由題可設(shè)橢圓的方程為,由橢圓經(jīng)過點,可得,解得或(舍).所以,橢圓的標準方程為.【小問2詳解】解:易知,設(shè)點,則,且,,,則,當且僅當時,等號成立,故的最小值為.20、(1)不公平,理由見解析.(2)【解析】(1)通過計算概率來進行判斷.(2)利用幾何概型計算出所求概率.【小問1詳解】兩數(shù)之和為奇數(shù)的概率為,兩數(shù)之和為偶數(shù)的概率為,兩個概率不相等,所以不公平.【小問2詳解】設(shè)甲到的時刻為,乙到的時刻為,則,若它們中的任意一艘都不需要等待碼頭空出,則或,畫出可行域如下圖陰影部分所示,所以所求的概率為:.21、(1)(2)【解析】(1)設(shè)動點,根據(jù)條件列出方程,化簡求解即可;(2)設(shè),求出圓心到軌跡上點的距離,配方求最值即可得解.【小問1詳解】設(shè)動點,則,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論