版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江西省頂級名校2026屆數(shù)學高一上期末調(diào)研試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.給出下列命題:①函數(shù)為偶函數(shù);②函數(shù)在上單調(diào)遞增;③函數(shù)在區(qū)間上單調(diào)遞減;④函數(shù)與的圖像關于直線對稱.其中正確命題的個數(shù)是()A.1 B.2C.3 D.42.設,,則()A. B.C. D.3.已知集合,,則A∩B中元素的個數(shù)為()A.2 B.3C.4 D.54.下列四個函數(shù),以為最小正周期,且在區(qū)間上單調(diào)遞減的是()A. B.C. D.5.已知是空間兩條不重合的直線,是兩個不重合的平面,則下列命題中正確的是A.,,B,,C.,,D.,,6.設集合,.若,則()A. B.C. D.7.下列函數(shù)中,最小正周期是且是奇函數(shù)的是()A. B.C. D.8.已知函數(shù)對任意實數(shù)都滿足,若,則A.-1 B.0C.1 D.29.若,且,則角的終邊位于A.第一象限 B.第二象限C.第三象限 D.第四象限10.設m,n是兩條不同的直線,α,β,γ是三個不同的平面,則下列命題中正確的是A.若,,則B.若,,,則C.若,,則D.若,,,則二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)的圖象關于直線對稱,則的最小值是________.12.已知圓心為(1,1),經(jīng)過點(4,5),則圓的標準方程為_____________________.13.函數(shù)的單調(diào)減區(qū)間是_________.14.冪函數(shù)y=f(x)的圖象過點(2,8),則15.寫出一個同時具有下列三個性質函數(shù):________.①;②在上單調(diào)遞增;③.16.如圖所示,中,,邊AC上的高,則其水平放置的直觀圖的面積為______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,頂點,,BC邊所在直線方程為.(1)求過點A且平行于BC的直線方程;(2)求線段AB的垂直平分線方程.18.已知函數(shù)(a>0且a≠1).(1)若f(x)在[-1,1]上的最大值與最小值之差為,求實數(shù)a的值;(2)若,當a>1時,解不等式.19.如圖,四邊形中,,,,,、分別在、上,,現(xiàn)將四邊形沿折起,使平面平面()若,是否存在折疊后的線段上存在一點,且,使得平面?若存在,求出的值;若不存在,說明理由()求三棱錐的體積的最大值,并求此時點到平面的距離20.近年來,隨著我市經(jīng)濟的快速發(fā)展,政府對民生越來越關注市區(qū)現(xiàn)有一塊近似正三角形的土地(如圖所示),其邊長為2百米,為了滿足市民的休閑需求,市政府擬在三個頂點處分別修建扇形廣場,即扇形和,其中與、分別相切于點,且與無重疊,剩余部分(陰影部分)種植草坪.設長為(單位:百米),草坪面積為(單位:萬平方米).(1)試用分別表示扇形和的面積,并寫出的取值范圍;(2)當為何值時,草坪面積最大?并求出最大面積.21.已知函數(shù),其中(1)判斷函數(shù)的奇偶性并證明;(2)求函數(shù)的值域
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】①函數(shù)為偶函數(shù),因為是正確的;②函數(shù)在上單調(diào)遞增,單調(diào)增是正確的;③函數(shù)是偶函數(shù),在區(qū)間上單調(diào)遞增,故選項不正確;④函數(shù)與互為反函數(shù),根據(jù)反函數(shù)的概念得到圖像關于對稱.是正確的.故答案為C.2、A【解析】由對數(shù)函數(shù)的圖象和性質知,,則.又因為,根據(jù)已知可算出其取值范圍,進而得到答案.【詳解】解:因為,,所以,又+,所以,所以.故選:A.3、B【解析】采用列舉法列舉出中元素的即可.【詳解】由題意,,故中元素的個數(shù)為3.故選:B【點晴】本題主要考查集合的交集運算,考查學生對交集定義的理解,是一道容易題.4、A【解析】先判斷各函數(shù)最小正周期,再確定各函數(shù)在區(qū)間上單調(diào)性,即可選擇判斷.【詳解】最小正周期為,在區(qū)間上單調(diào)遞減;最小正周期為,在區(qū)間上單調(diào)遞減;最小正周期為,在區(qū)間上單調(diào)遞增;最小正周期為,在區(qū)間上單調(diào)遞增;故選:A5、D【解析】A不正確,也有可能;B不正確,也有可能;C不正確,可能或或;D正確,,,,考點:1線面位置關系;2線面垂直6、C【解析】∵集合,,∴是方程的解,即∴∴,故選C7、A【解析】根據(jù)三角函數(shù)的周期性和奇偶性對選項逐一分析,由此確定正確選項.【詳解】A選項,的最小正周期是,且是奇函數(shù),A正確.B選項,的最小正周期是,且是奇函數(shù),B錯誤.C選項,的最小正周期為,且是奇函數(shù),C錯誤.D選項,的最小正周期是,且是偶函數(shù),D錯誤.故選:A8、A【解析】由題意首先確定函數(shù)的周期性,然后結合所給的關系式確定的值即可.【詳解】由可得,據(jù)此可得:,即函數(shù)是周期為2的函數(shù),且,據(jù)此可知.本題選擇A選項.【點睛】本題主要考查函數(shù)的周期性及其應用等知識,意在考查學生的轉化能力和計算求解能力.9、B【解析】∵sinα>0,則角α的終邊位于一二象限或y軸的非負半軸,∵由tanα<0,∴角α的終邊位于二四象限,∴角α的終邊位于第二象限故選擇B10、C【解析】根據(jù)空間中直線與平面,平面與平面的位置關系即得?!驹斀狻緼.因為垂直于同一平面的兩個平面可能平行或相交,不能確定兩平面之間是平行關系,故不正確;B.若,,,則或相交,故不正確;C.由垂直同一條直線的兩個平面的關系判斷,正確;D.若,,,則或相交,故不正確.故選:C【點睛】本題考查空間直線和平面,平面和平面的位置關系,考查學生的空間想象能力。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)正弦函數(shù)圖象的對稱性求解.【詳解】依題意可知,得,所以,故當時,取得最小值.故答案為:.【點睛】本題考查三角函數(shù)的對稱性.正弦函數(shù)的對稱軸方程是,對稱中心是12、【解析】設出圓的標準方程,代入點的坐標,求出半徑,求出圓的標準方程【詳解】設圓的標準方程為(x-1)2+(y-1)2=R2,由圓經(jīng)過點(4,5)得R2=25,從而所求方程為(x-1)2+(y-1)2=25,故答案為(x-1)2+(y-1)2=25【點睛】本題主要考查圓的標準方程,利用了待定系數(shù)法,關鍵是確定圓的半徑13、##【解析】根據(jù)復合函數(shù)的單調(diào)性“同增異減”,即可求解.【詳解】令,根據(jù)復合函數(shù)單調(diào)性可知,內(nèi)層函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,外層函數(shù)在定義域上單調(diào)遞增,所以函數(shù)#在上單調(diào)遞減,在上單調(diào)遞增.故答案為:.14、64【解析】由冪函數(shù)y=f(x)=xα的圖象過點(2,8)【詳解】∵冪函數(shù)y=f(x)=xα的圖象過點∴2α=8∴f(x)=x∴f(4)=故答案為64【點睛】本題考查冪函數(shù)概念,考查運算求解能力,是基礎題15、或其他【解析】找出一個同時具有三個性質的函數(shù)即可.【詳解】例如,是單調(diào)遞增函數(shù),,滿足三個條件.故答案為:.(答案不唯一)16、.【解析】直接根據(jù)直觀圖與原圖像面積的關系求解即可.【詳解】的面積為,由平面圖形的面積與直觀圖的面積間的關系.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用點斜式求得過點A且平行于BC的直線方程.(2)根據(jù)中點坐標、線段AB的垂直平分線的斜率求得正確答案.【小問1詳解】直線的斜率為,所以過點A且平行于BC的直線方程為.【小問2詳解】線段的中點為,直線的斜率為,所以線段AB的垂直平分線的斜率為,所以線段AB的垂直平分線為.18、(1)2或;(2)或.【解析】(1)對a值分類討論,根據(jù)單調(diào)性列出最值之差表達式即可求解;(2)由函數(shù)的奇偶性、單調(diào)性脫去給定不等式中的法則“”,轉化為一元二次不等式,求解即得.【詳解】(1)①當,f(x)在[-1,1]上單調(diào)遞增,,解得,②當時,f(x)在[-1,1]上單調(diào)遞減,,解得,綜上可得,實數(shù)a的值為2或.(2)由題可得定義域為,且,所以為上的奇函數(shù);又因為,且,所以在上單調(diào)遞增;所以,或,所以不等式的解集為或.【點睛】解抽象的函數(shù)不等式,分析對應函數(shù)的奇偶性和單調(diào)性是解決問題的關鍵.19、(1)答案見解析;(2)答案見解析.【解析】(1)存在,使得平面,此時,即,利用幾何關系可知四邊形為平行四邊形,則,利用線面平行的判斷定理可知平面成立(2)由題意可得三棱錐的體積,由均值不等式的結論可知時,三棱錐的體積有最大值,最大值為建立空間直角坐標系,則,平面的法向量為,故點到平面的距離試題解析:()存在,使得平面,此時證明:當,此時,過作,與交,則,又,故,∵,,∴,且,故四邊形為平行四邊形,∴,∵平面,平面,∴平面成立()∵平面平面,平面,,∴平面,∵,∴,,,故三棱錐的體積,∴時,三棱錐的體積有最大值,最大值為建立如圖所示的空間直角坐標系,則,,,,,設平面的法向量為,則,∴,取,則,,∴∴點到平面的距離20、(1),,;(2)時,草坪面積最大,最大面積為萬平方米.【解析】(1)因為,所以可得三個扇形的半徑,圓心角都為,由扇形的面積公式可得答案;(2)用三角形面積減去三個扇形面積可得草坪面積,再利用二次函數(shù)可求出最值.【詳解】(1),則,,在扇形中,的長為,所以,同理,.∵與無重疊,∴,即,則.又三個扇形都在三角形內(nèi)部,則,∴.(2)∵,∴,∴當時,取得最大值,為.故當長為百米時,草坪
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 地震知識測試題附答案
- 執(zhí)業(yè)助理醫(yī)師試題及答案
- 胸外心臟按壓試題及答案
- 建筑結構施工題庫及答案
- 陜西醫(yī)療崗結構化面試題目及參考答案
- 醫(yī)院西藥房招聘考試題及答案
- 三基感染試題及答案2025年
- 三基護理試題及答案
- 社會工作者初級考試試題及答案解析
- G3鍋爐水處理操作證考試100題(含答案)
- 蘇教版六年級數(shù)學上冊全冊知識點歸納(全梳理)
- 2025年版?zhèn)€人與公司居間合同范例
- 中鐵物資采購投標
- 泄漏管理培訓課件
- 電子商務平臺項目運營合作協(xié)議書范本
- 動設備監(jiān)測課件 振動狀態(tài)監(jiān)測技術基礎知識
- 服裝廠員工績效考核與獎懲制度
- 專題15平面解析幾何(選擇填空題)(第一部分)(解析版) - 大數(shù)據(jù)之十年高考真題(2014-2025)與優(yōu) 質模擬題(新高考卷與全國理科卷)
- 部門考核方案
- 茜草素的藥代動力學和藥效學研究
- T-CPQS C010-2024 鑒賞收藏用潮流玩偶及類似用途產(chǎn)品
評論
0/150
提交評論