版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
大慶市重點中學(xué)2026屆數(shù)學(xué)高二上期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列說法錯誤的是()A.命題“,”的否定是“,”B.若“”是“或”的充分不必要條件,則實數(shù)m的最大值為2021C.“”是“函數(shù)在內(nèi)有零點”的必要不充分條件D.已知,且,則的最小值為92.連續(xù)拋擲一枚硬幣3次,觀察正面出現(xiàn)的情況,事件“至少2次出現(xiàn)正面”的對立事件是()A.只有2次出現(xiàn)反面 B.至多2次出現(xiàn)正面C.有2次或3次出現(xiàn)正面 D.有2次或3次出現(xiàn)反面3.橢圓()的右頂點是拋物線的焦點,且短軸長為2,則該橢圓方程為()A. B.C. D.4.拋物線的焦點到準(zhǔn)線的距離為()A. B.C. D.5.若直線與圓相交于、兩點,且(其中為原點),則的值為()A. B.C. D.6.第24屆冬季奧林匹克運(yùn)動會,將于2022年2月4日在北京市和張家口市聯(lián)合舉行.北京將成為奧運(yùn)史上第一個舉辦過夏季奧林匹克運(yùn)動會和冬季奧林匹克運(yùn)動會的城市.根據(jù)安排,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結(jié)構(gòu)鳥瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是兩個“相似橢圓”(離心率相同的兩個橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長軸一端點A和短軸一端點B分別向內(nèi)層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.7.已知向量,,則等于()A. B.C. D.8.已知向量,,則()A. B.C. D.9.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》是明代數(shù)學(xué)家程大位(1533-1606年)所著.該書中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”.其意思是:“一座7層塔共掛了381盞燈,且下一層燈數(shù)是上一層的2倍,則可得塔的最頂層共有燈幾盞?”.若改為“求塔的最底層幾盞燈?”,則最底層有()盞.A.192 B.128C.3 D.110.已知關(guān)于的不等式的解集是,則的值是()A B.5C. D.711.設(shè)拋物線的焦點為F,過點F且垂直于x軸的直線與拋物線C交于A,B兩點,若,則()A1 B.2C.4 D.812.若點P是曲線上任意一點,則點P到直線的最小距離為()A.0 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正方體的棱長為為的中點,為面內(nèi)一點.若點到面的距離與到直線的距離相等,則三棱錐體積的最小值為__________14.已知過點作拋物線的兩條切線,切點分別為A、B,直線經(jīng)過拋物線C的焦點F,則___________15.已知函數(shù)是定義域上的單調(diào)遞增函數(shù),是的導(dǎo)數(shù)且為定義域上的單調(diào)遞減函數(shù),請寫出一個滿足條件的函數(shù)的解析式___________16.已知正三棱臺上、下底面邊長分別為1和2,高為1,則這個正三棱臺的體積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為坐標(biāo)原點,橢圓:的左、右焦點分別為,,右頂點為,上頂點為,若,,成等比數(shù)列,橢圓上的點到焦點的距離的最大值為求橢圓的標(biāo)準(zhǔn)方程;過該橢圓的右焦點作兩條互相垂直的弦與,求的取值范圍18.(12分)已知是等差數(shù)列,,.(1)求的通項公式;(2)設(shè)的前項和,求的值.19.(12分)已知圓的圓心在直線上,與軸正半軸相切,且被直線:截得的弦長為.(1)求圓的方程;(2)設(shè)點在圓上運(yùn)動,點,且點滿足,記點的軌跡為.①求的方程,并說明是什么圖形;②試探究:在直線上是否存在定點(異于原點),使得對于上任意一點,都有為一常數(shù),若存在,求出所有滿足條件的點的坐標(biāo),若不存在,說明理由.20.(12分)已知點,,線段是圓的直徑.(1)求圓的方程;(2)過點的直線與圓相交于,兩點,且,求直線的方程.21.(12分)已知橢圓:的左、右焦點分別為,,離心率等于,點,且的面積等于(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知斜率存在且不為0的直線與橢圓交于A,B兩點,當(dāng)點A關(guān)于y軸的對稱點在直線PB上時,直線是否過定點?若過定點,求出此定點;若不過,請說明理由22.(10分)已知雙曲線及直線(1)若與有兩個不同的交點,求實數(shù)的取值范圍(2)若與交于,兩點,且線段中點的橫坐標(biāo)為,求線段的長
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】對于A:用存在量詞否定全稱命題,直接判斷;對于B:根據(jù)充分不必要條件直接判斷;對于C:判斷出“”是“函數(shù)在內(nèi)有零點”的充分不必要條件,即可判斷;對于D:利用基本不等式求最值.【詳解】對于A:用存在量詞否定全稱命題,所以命題“,”的否定是“,”.故A正確;對于B:若“”是“或”的充分不必要條件,所以,即實數(shù)m的最大值為2021.故B正確;對于C:“函數(shù)在內(nèi)有零點”,則,解得:或,所以“”是“函數(shù)在內(nèi)有零點”的充分不必要條件.故C錯誤;對于D:已知,且,所以(當(dāng)且僅當(dāng),即時取等號)故D正確.故選:C2、D【解析】根據(jù)對立事件的定義即可得出結(jié)果.【詳解】對立事件是指事件A和事件B必有一件發(fā)生,連續(xù)拋擲一枚均勻硬幣3次,“至少2次出現(xiàn)正面”即有2次或3次出現(xiàn)正面,對立事件為0次或1次出現(xiàn)正面,即“有2次或3次出現(xiàn)反面”故選:D3、A【解析】求得拋物線的焦點從而求得,再結(jié)合題意求得,即可寫出橢圓方程.【詳解】因為拋物線的焦點坐標(biāo)為,故可得;又短軸長為2,故可得,即;故橢圓方程為:.故選:.4、B【解析】根據(jù)拋物線的幾何性質(zhì)可得選項.【詳解】由得,所以,所以拋物線的焦點到準(zhǔn)線的距離為1,故選:B.5、D【解析】分析出為等腰直角三角形,可得出原點到直線的距離,利用點到直線的距離公式可得出關(guān)于的等式,由此可解得的值.【詳解】圓的圓心為原點,由于且,所以,為等腰直角三角形,且圓心到直線的距離為,由點到直線的距離公式可得,解得.故選:D.【點睛】關(guān)鍵點點睛:本題考查利用圓周角求參數(shù),解題的關(guān)鍵在于求出弦心距,再利用點到直線的距離公式列方程求解參數(shù).6、C【解析】設(shè)內(nèi)層橢圓的方程為,可得外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,根據(jù),得到,同理得到,結(jié)合題意求得,進(jìn)而求得離心率.【詳解】設(shè)內(nèi)層橢圓方程為,因為內(nèi)外層的橢圓的離心率相同,可設(shè)外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,整理得,由,整理得,設(shè)切線的方程為,同理可得,因為兩切線斜率之積等于,可得,可得,所以離心率為.故選:C.7、C【解析】根據(jù)題意,結(jié)合空間向量的坐標(biāo)運(yùn)算,即可求解.【詳解】由,,得,因此.故選:C.8、D【解析】按空間向量的坐標(biāo)運(yùn)算法則運(yùn)算即可.【詳解】.故選:D.9、A【解析】根據(jù)題意,轉(zhuǎn)化為等比數(shù)列,利用通項公式和求和公式進(jìn)行求解.【詳解】設(shè)這個塔頂層有盞燈,則問題等價于一個首項為,公比為2的等比數(shù)列的前7項和為381,所以,解得,所以這個塔的最底層有盞燈.故選:A.10、D【解析】由題意可得的根為,然后利用根與系數(shù)的關(guān)系列方程組可求得結(jié)果【詳解】因為關(guān)于的不等式的解集是,所以方程的根為,所以,得,所以,故選:D11、C【解析】根據(jù)焦點弦的性質(zhì)即可求出【詳解】依題可知,,所以故選:C12、D【解析】由導(dǎo)數(shù)的幾何意義求得曲線上與直線平行的切線方程的切線坐標(biāo),求出切點到直線的距離即為所求最小距離【詳解】點是曲線上的任意一點,設(shè),令,解得1或(舍去),,∴曲線上與直線平行的切線的切點為,點到直線的最小距離.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由題意可知,點在平面內(nèi)的軌跡是以為焦點,直線為準(zhǔn)線的拋物線,如圖在底面建立平面直角坐標(biāo)系,求出拋物線方程,直線的方程,將直線向拋物線平移,恰好與拋物線相切時,切點為點,此時的面積最小,則三棱錐體積的最小【詳解】因為為面內(nèi)一點,且點到面的距離與到直線的距離相等,所以點在平面內(nèi)的軌跡是以為焦點,直線為準(zhǔn)線的拋物線,如圖在底面,以所在的直線為軸,以的中垂線為軸建立平面直角坐標(biāo)系,則,設(shè)拋物線方程為,則,得,所以拋物線方程為,,直線的方程為,即,設(shè)與直線平行且與拋物線相切的直線方程為,由,得,由,得,所以與拋物線相切的直線為,此時切點為,且的面積最小,因為點到直線的距離為,所以的面積的最小值為,所以三棱錐體積的最小值為,故答案為:14、64【解析】用字母進(jìn)行一般化研究,先求出切點弦方程,再聯(lián)立化簡,最后代入數(shù)據(jù)計算【詳解】設(shè),點處的切線方程為聯(lián)立,得由,得即,解得所以點處的切線方程為,整理得同理,點處的切線方程為設(shè)為兩切線的交點,則所以在直線上即直線AB的方程為又直線AB經(jīng)過焦點所以,即聯(lián)立得所以所以本題中所以故答案為:64【點睛】結(jié)論點睛:過點作拋物線的兩條切線,切點弦的方程為15、(答案不唯一)【解析】由題意可得0,結(jié)合在定義域上為減函數(shù)可取.【詳解】因為在定義域為單調(diào)增函數(shù)所以在定義域上0,又因為在定義域上為減函數(shù),且大于等于0.所以可取(),(),滿足條件所以可為().故答案為:(答案不唯一).16、【解析】先計算兩個底面的面積,再由體積公式計算即可.【詳解】上底面的面積為,下底面的面積為,則這個正三棱臺的體積為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】根據(jù),,成等比數(shù)列,橢圓上的點到焦點的距離的最大值為.列出關(guān)于、、的方程組,求出、的值,即可得出橢圓的方程;對直線和分兩種情況討論:一種是兩條直線與坐標(biāo)軸垂直,可求出兩條弦長度之和;二是當(dāng)兩條直線斜率都存在時,設(shè)直線的方程為,將直線方程與橢圓方程聯(lián)立,列出韋達(dá)定理,利用弦長公式可計算出的長度的表達(dá)式,然后利用相應(yīng)的代換可求出的長度表達(dá)式,將兩線段長度表達(dá)式相加,利用函數(shù)思想可求出兩條弦長的取值范圍最后將兩種情況的取值范圍進(jìn)行合并即可得出答案【詳解】易知,得,則,而,又,得,,因此,橢圓C的標(biāo)準(zhǔn)方程為;當(dāng)兩條直線中有一條斜率為0時,另一條直線的斜率不存在,由題意易得;當(dāng)兩條直線斜率都存在且不為0時,由知,設(shè)、,直線MN的方程為,則直線PQ的方程為,將直線方程代入橢圓方程并整理得:,顯然,,,,同理得,所以,,令,則,,設(shè),,所以,,所以,,則綜合可知,的取值范圍是【點睛】本題主要考查待定系數(shù)法求橢圓方程及圓錐曲線求范圍,屬于難題.解決圓錐曲線中的范圍問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將圓錐曲線中范圍問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法求解.18、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,利用題中等式建立、的方程組,求出、的值,然后根據(jù)等差數(shù)列的通項公式求出數(shù)列的通項公式;(2)利用等差數(shù)列前項和公式求出,然后由求出的值.【詳解】(1)設(shè)等差數(shù)列的公差為,則,解得,,數(shù)列的通項為;(2)數(shù)列的前項和,由,化簡得,即,.【點睛】本題考查等差數(shù)列的通項公式的求解,考查等差數(shù)列的前項和公式,常用的方法就是利用首項和公差建立方程組求解,考查運(yùn)算求解能力,屬于中等題.19、(1);(2)①,圓;②存在,.【解析】(1)設(shè)圓心,根據(jù)題意,得到半徑,根據(jù)弦長的幾何表示,由題中條件,列出方程求解,得出,從而可得圓心和半徑,進(jìn)而可得出結(jié)果;(2)①設(shè),根據(jù)向量的坐標(biāo)表示,由題中條件,得到,代入圓的方程,即可得出結(jié)果;②假設(shè)存在一點滿足(其中為常數(shù)),設(shè),根據(jù)題意,得到,再由①,得到,兩式聯(lián)立化簡整理,得到,推出,求解得出,即可得出結(jié)果.【詳解】(1)設(shè)圓心,則由圓與軸正半軸相切,可得半徑.∵圓心到直線的距離,由,解得.故圓心為或,半徑等于.∵圓與軸正半軸相切圓心只能為故圓的方程為;(2)①設(shè),則:,,∵點A在圓上運(yùn)動即:所以點的軌跡方程為,它是一個以為圓心,以為半徑的圓;②假設(shè)存在一點滿足(其中為常數(shù))設(shè),則:整理化簡得:,∵在軌跡上,化簡得:,所以整理得,解得:;存在滿足題目條件.【點睛】本題主要考查求圓的方程,考查圓中的定點問題,涉及圓的弦長公式等,屬于??碱}型.20、(1);(2)或.【解析】(1)AB兩點的中點為圓心,AB兩點距離的一半為半徑;(2)分斜率存在和不存在,根據(jù)垂徑定理即可求解.【小問1詳解】已知點,,線段是圓M的直徑,則圓心坐標(biāo)為,∴半徑,∴圓的方程為;【小問2詳解】由(1)可知圓的圓心,半徑為.設(shè)為中點,則,,則.當(dāng)?shù)男甭什淮嬖跁r,的方程為,此時,符合題意;當(dāng)?shù)男甭蚀嬖跁r,設(shè)的方程為,即kx-y+2=0,則,解得,故直線的方程為,即.綜上,直線的方程為或.21、(1)(2)【解析】(1)用待定系數(shù)法求出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線的方程為,設(shè),用“設(shè)而不求法”表示出和.表示出直線PB,把A關(guān)于y軸的對稱點為帶入后整理化簡,即可得到,從而可以判斷出直線恒過定點.【小問1詳解】由題意可得:,解得:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲偉業(yè)財務(wù)制度
- 完善erp相關(guān)財務(wù)制度
- 南寧小學(xué)財務(wù)制度
- 會計部財務(wù)制度管理
- 項目組獨立核算財務(wù)制度
- 關(guān)于白象的制度
- 養(yǎng)老院老人健康飲食營養(yǎng)師激勵制度
- 井下臨時油庫安全管理制度(3篇)
- 食品安全產(chǎn)品召回制度
- 罕見腫瘤的個體化治療腫瘤負(fù)荷監(jiān)測技術(shù)療效評估意義
- 江蘇省鹽城市大豐區(qū)四校聯(lián)考2025-2026學(xué)年七年級上學(xué)期12月月考?xì)v史試卷(含答案)
- 事業(yè)編退休報告申請書
- 原發(fā)性骨髓纖維化2026
- 半導(dǎo)體廠務(wù)項目工程管理 課件 項目6 凈化室系統(tǒng)的設(shè)計與維護(hù)
- 河南省洛陽強(qiáng)基聯(lián)盟2025-2026學(xué)年高二上學(xué)期1月月考英語試題含答案
- 2025年雞飼料采購合同
- AQ 2001-2018 煉鋼安全規(guī)程(正式版)
- JBT 14850-2024 塔式起重機(jī)支護(hù)系統(tǒng)(正式版)
- 鋼結(jié)構(gòu)清包工合同
- 安全技術(shù)勞動保護(hù)措施管理規(guī)定
- 論高級管理人員應(yīng)具備的財務(wù)知識
評論
0/150
提交評論