版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆廣東省遂溪縣第一中學高一上數(shù)學期末預測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某地一年之內12個月的降水量從小到大分別為:46,48,51,53,53,56,56,56,58,64,66,71,則該地區(qū)的月降水量20%分位數(shù)和75%分位數(shù)為()A.51,58 B.51,61C.52,58 D.52,612.若函數(shù)是定義在上的偶函數(shù),則()A.1 B.3C.5 D.73.為了得到函數(shù)的圖像,只需將函數(shù)的圖像()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位4.已知定義在上的偶函數(shù),且當時,單調遞減,則關于x的不等式的解集是()A. B.C. D.5.函數(shù)的圖象如圖所示,則()A. B.C. D.6.已知在定義域上是減函數(shù),且,則的取值范圍為()A.(0,1) B.(-2,1)C.(0,) D.(0,2)7.平行四邊形中,若點滿足,,設,則A. B.C. D.8.若向量=,||=2,若·(-)=2,則向量與的夾角()A. B.C. D.9.若,求()A. B.C. D.10.下列函數(shù)中,圖象關于坐標原點對稱的是()A.y=x B.C.y=x D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),現(xiàn)有如下幾個命題:①該函數(shù)為偶函數(shù);
②是該函數(shù)的一個單調遞增區(qū)間;③該函數(shù)的最小正周期為;④該函數(shù)的圖像關于點對稱;⑤該函數(shù)值域為.其中正確命題的編號為______12.兩條平行直線與的距離是__________13.若,且α為第一象限角,則___________.14.的值是__________15.計算_________.16.已知,是相互獨立事件,且,,則______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知(1)求函數(shù)的單調遞增區(qū)間;(2)當時,函數(shù)的值域為,求實數(shù)的范圍18.已知函數(shù).(1)求的最小正周期和單調遞增區(qū)間;(2)求在區(qū)間的最大值和最小值19.設是定義在上的偶函數(shù),的圖象與的圖象關于直線對稱,且當時,()求的解析式()若在上為增函數(shù),求的取值范圍()是否存在正整數(shù),使的圖象的最高點落在直線上?若存在,求出的值;若不存在,請說明理由20.已知函數(shù).(1)在①,②這兩個條件中任選一個,補充在下面的橫線上,并解答.問題:已知函數(shù)___________,,求的值域.注:如果選擇兩個條件分別解答,按第一個解答計分.(2)若,,,求的取值范圍.21.已知函數(shù)是定義在上的偶函數(shù),函數(shù).(1)求實數(shù)的值;(2)若時,函數(shù)的最小值為.求實數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】先把每月的降水量從小到大排列,再根據(jù)分位數(shù)的定義求解.【詳解】把每月的降水量從小到大排列為:46,48,51,53,53,56,56,56,58,64,66,71,,所以該地區(qū)月降水量的分位數(shù)為;所以該地區(qū)的月降水量的分位數(shù)為.故選:B2、C【解析】先根據(jù)偶函數(shù)求出a、b的值,得到解析式,代入直接求解.【詳解】因為偶函數(shù)的定義域關于原點對稱,則,解得.又偶函數(shù)不含奇次項,所以,即,所以,所以.故選:C3、A【解析】根據(jù)函數(shù)平移變換的方法,由即,只需向右平移個單位即可.【詳解】根據(jù)函數(shù)平移變換,由變換為,只需將的圖象向右平移個單位,即可得到的圖像,故選A.【點睛】本題主要考查了三角函數(shù)圖象的平移變換,解題關鍵是看自變量上的變化量,屬于中檔題.4、D【解析】由偶函數(shù)的性質求得,利用偶函數(shù)的性質化不等式中自變量到上,然后由單調性轉化求解【詳解】解:由題意,,的定義域,時,遞減,又是偶函數(shù),因此不等式轉化為,,,解得故選:D5、C【解析】根據(jù)正弦型函數(shù)圖象與性質,即可求解.【詳解】由圖可知:,所以,故,又,可求得,,由可得故選:C.6、A【解析】根據(jù)函數(shù)的單調性進行求解即可.【詳解】因為在定義域上是減函數(shù),所以由,故選:A7、B【解析】畫出平行四邊形,在上取點,使得,在上取點,使得,由圖中幾何關系可得到,即可求出的值,進而可以得到答案【詳解】畫出平行四邊形,在上取點,使得,在上取點,使得,則,故,,則.【點睛】本題考查了平面向量的線性運算,考查了平面向量基本定理的應用,考查了平行四邊形的性質,屬于中檔題8、A【解析】利用向量模的坐標求法可得,再利用向量數(shù)量積求夾角即可求解.【詳解】由已知可得:,得,設向量與的夾角為,則所以向量與的夾角為故選:A.【點睛】本題考查了利用向量數(shù)量積求夾角、向量模的坐標求法,屬于基礎題.9、A【解析】根據(jù),求得,再利用指數(shù)冪及對數(shù)的運算即可得出答案.【詳解】解:因為,所以,所以.故選:A.10、B【解析】根據(jù)圖象關于坐標原點對稱的函數(shù)是奇函數(shù),結合奇函數(shù)的性質進行判斷即可.【詳解】因為圖象關于坐標原點對稱的函數(shù)是奇函數(shù),所以有:A:函數(shù)y=xB:設f(x)=x3,因為C:設g(x)=x,因為g(-x)=D:因為當x=0時,y=1,所以該函數(shù)的圖象不過原點,因此不是奇函數(shù),不符合題意,故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、②③【解析】由于為非奇非偶函數(shù),①錯誤.,此時,其在上為增函數(shù),②正確.由于,所以函數(shù)最小正周期為,③正確.由于,故④正確.當時,,故⑤錯誤.綜上所述,正確的編號為②③.12、【解析】直線與平行,,得,直線,化為,兩平行線距離為,故答案為.13、【解析】先求得,進而可得結果.【詳解】因為,又為第一象限角,所以,,故.故答案為:.14、【解析】分析:利用對數(shù)運算的性質和運算法則,即可求解結果.詳解:由.點睛:本題主要考查了對數(shù)的運算,其中熟記對數(shù)的運算法則和對數(shù)的運算性質是解答的關鍵,著重考查了推理與運算能力.15、1【解析】,故答案為116、【解析】由相互獨立事件的性質和定義求解即可【詳解】因為,是相互獨立事件,所以,也是相互獨立事件,因為,,所以,故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)根據(jù)正弦函數(shù)的性質計算可得;(2)首先求出函數(shù)取最大值時的取值集合,即可得到,再根據(jù)函數(shù)在上是減函數(shù),且,則的最大值為內使函數(shù)值為的值,即可求出的取值范圍;【小問1詳解】解:對于函數(shù),令,,求得,故函數(shù)的單調遞增區(qū)間為,【小問2詳解】解:令,,解得,.即時取得最大值因為當時,取到最大值,所以又函數(shù)在上是減函數(shù),且,故的最大值為內使函數(shù)值為的值,令,即,因為,所以,所以,解得,所以的取值范圍是18、(1)最小正周期為,單調遞增區(qū)間;(2)在上的最大值為,最小值為.【解析】(1)由正弦型函數(shù)的性質,應用整體代入法有時單調遞增求增區(qū)間,由求最小正周期即可.(2)由已知區(qū)間確定的區(qū)間,進而求的最大值和最小值【詳解】(1)由三角函解析式知:最小正周期為,令,得,∴單調遞增區(qū)間為,(2)在上,有,∴當時取最小值,當時取最大值為.19、(1);(2);(3)見解析.【解析】分析:()當時,,;當時,,從而可得結果;()由題設知,對恒成立,即對恒成立,于是,,從而;()因為為偶函數(shù),故只需研究函數(shù)在的最大值,利用導數(shù)研究函數(shù)的單調性,討論兩種情況,即可篩選出符合題意的正整數(shù).詳解:()當時,,;當時,,∴,()由題設知,對恒成立,即對恒成立,于是,,從而()因為為偶函數(shù),故只需研究函數(shù)在的最大值令,計算得出()若,即,,故此時不存在符合題意的()若,即,則在上為增函數(shù),于是令,故綜上,存在滿足題設點睛:本題主要考查利用導數(shù)研究函數(shù)的單調性、函數(shù)奇偶性的應用及利用單調性求參數(shù)的范圍,屬于中檔題.利用單調性求參數(shù)的范圍的常見方法:①視參數(shù)為已知數(shù),依據(jù)函數(shù)的圖象或單調性定義,確定函數(shù)的單調區(qū)間,與已知單調區(qū)間比較求參數(shù)需注意若函數(shù)在區(qū)間上是單調的,則該函數(shù)在此區(qū)間的任意子集上也是單調的;②利用導數(shù)轉化為不等式或恒成立問題求參數(shù)范圍.20、(1)答案見解析(2)【解析】(1)根據(jù)復合函數(shù)的性質即可得到的值域;(2)令,求出其最小值,則問題轉化為恒成立,進而求最小值即可.【小問1詳解】選擇①,,令,則,故函數(shù)的值域為R,即的值域為R.選擇②,,令,則,因為函數(shù)單調遞增,所以,即的值域為.【小問2詳解】令.當時,,,;當時,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建立財務制度與內控制度
- 政府采購財務制度
- 北京市社會團體財務制度
- 4s店售后財務制度
- 亞冬會執(zhí)行財務制度
- 關于消防安全的制度
- 公司月度質量例會制度
- 疫情就餐學生管理制度表(3篇)
- 國美創(chuàng)維活動策劃方案(3篇)
- 小院種植施工方案(3篇)
- 2024年國家國防科工局重大專項工程中心面向應屆生招考聘用筆試參考題庫附帶答案詳解
- 福建省寧德市2023-2024學年高一上學期期末質量檢測物理試題(原卷版)
- 《油氣儲運安全技術》課件第九章 液化石油氣儲運安全與管理
- 2023修訂版《托育中心、幼兒園建筑設計規(guī)范》
- 2018廣州一模作文講練評
- 生物化學:實驗七 牛乳中酪蛋白的制備
- 旋磁治療機前列腺總結報告
- 《自信的秘密》節(jié)選
- 仍然不足夠專題培訓
- 2017全國高考真題完型填空匯編含答案
- YC/T 547.6-2017煙草行業(yè)專用計量器具技術審核規(guī)范第6部分:卷煙通風率檢測設備
評論
0/150
提交評論