版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
山東省蒙陰一中2026屆數(shù)學高二上期末學業(yè)水平測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設正數(shù)數(shù)列的前項和為,數(shù)列的前項積為,且,則()A. B.C. D.2.考試停課復習期間,小王同學計劃將一天中的7節(jié)課全部用來復習4門不同的考試科目,每門科目復習1或2節(jié)課,則不同的復習安排方法有()種A.360 B.630C.2520 D.151203.《九章算數(shù)》“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積為3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為()A.1升 B.升C.升 D.升4.若直線與直線垂直,則a=()A.-2 B.0C.0或-2 D.15.函數(shù)f(x)=的圖象大致形狀是()A. B.C. D.6.已知是兩條不同的直線,是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件7.過點且平行于直線的直線的方程為()A. B.C. D.8.甲乙兩個雷達獨立工作,它們發(fā)現(xiàn)飛行目標的概率分別是0.9和0.8,飛行目標被雷達發(fā)現(xiàn)的概率為()A.0.72 B.0.26C.0.7 D.0.989.已知函數(shù)滿足,則曲線在點處的切線方程為()A. B.C. D.10.已知雙曲線的離心率為2,則()A.2 B.C. D.111.圓的圓心和半徑分別是()A. B.C. D.12.等差數(shù)列中,,,則當取最大值時,的值為A.6 B.7C.6或7 D.不存在二、填空題:本題共4小題,每小題5分,共20分。13.不大于100的正整數(shù)中,被3除余1的所有數(shù)的和是___________14.在中,,,,則__________.15.已知實數(shù)x,y滿足方程,則的最大值為_________16.在空間直角坐標系中,若三點、、滿足,則實數(shù)的值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知正項等差數(shù)列滿足,(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和18.(12分)設函數(shù),其中,為自然對數(shù)的底數(shù).(1)討論單調(diào)性;(2)證明:當時,.19.(12分)已知橢圓焦距為,點在橢圓C上(1)求橢圓C的方程;(2)過點的直線與C交于M,N兩點,點R是直線上任意一點,設直線的斜率分別為,若,求的方程20.(12分)在中,角A,B,C的對邊分別為a,b,c,且求A和B的大?。蝗鬗,N是邊AB上的點,,求的面積的最小值21.(12分)已知圓,直線過定點.(1)若與圓相切,求的方程;(2)若與圓相交于兩點,且,求此時直線的方程.22.(10分)已知拋物線的焦點為,點在第一象限且為拋物線上一點,點在點右側(cè),且△恰為等邊三角形(1)求拋物線的方程;(2)若直線與交于兩點,向量的夾角為(其中為坐標原點),求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】當可求得;當時,可證得數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式可推導得到,由求得后,利用可求得結(jié)果.【詳解】當時,,解得:;當時,由得:,即,,數(shù)列是以為首項,為公差的等差數(shù)列,,解得:,,經(jīng)檢驗:滿足,,故選:B.2、C【解析】,先安排復習節(jié)的科目,然后安排其余科目,由此計算出不同的復習安排方法數(shù).【詳解】第步,門科目選門,安排節(jié)課,方法數(shù)有種,第步,安排其余科目,每門科目節(jié)課,方法數(shù)有種,所以不同的復習安排方法有種.故選:C3、B【解析】設出竹子自上而下各節(jié)的容積且為等差數(shù)列,根據(jù)上面4節(jié)的容積共3升,下面3節(jié)的容積共4升列出關于首項和公差的方程,聯(lián)立即可求出首項和公差,根據(jù)求出的首項和公差,利用等差數(shù)列的通項公式即可求出第5節(jié)的容積【詳解】解:設竹子自上而下各節(jié)的容積分別為:,,,,且為等差數(shù)列,根據(jù)題意得:,,即①,②,②①得:,解得,把代入①得:,則故選:B【點睛】本題考查學生掌握等差數(shù)列的性質(zhì),靈活運用等差數(shù)列的通項公式化簡求值,屬于中檔題4、C【解析】代入兩直線垂直的公式,即可求解.【詳解】因為兩直線垂直,所以,解得:或.故選:C5、B【解析】利用函數(shù)的奇偶性排除選項A,C,然后利用特殊值判斷即可【詳解】解:由題得函數(shù)的定義域為,關于原點對稱.所以函數(shù)是奇函數(shù),排除選項A,C.當時,,排除選項D,故選:B6、B【解析】根據(jù)垂直關系的性質(zhì)可判斷.【詳解】由題,,則或,若,則或或與相交,故充分性不成立;若,則必有,故必要性成立,所以“”是“”的必要不充分條件.故選:B.7、B【解析】根據(jù)平行設直線方程,代入點計算得到答案.【詳解】設直線方程為,將點代入直線方程得到,解得.故直線方程為:.故選:B.8、D【解析】利用對立事件的概率求法求飛行目標被雷達發(fā)現(xiàn)的概率.【詳解】由題設,飛行目標不被甲、乙發(fā)現(xiàn)的概率分別為、,所以飛行目標被雷達發(fā)現(xiàn)的概率為.故選:D9、A【解析】求出函數(shù)的導數(shù),利用導數(shù)的定義求解,然后求解切線的斜率即可【詳解】解:函數(shù),可得,,可得,即,所以,可得,解得,所以,所以曲線在點處的切線方程為故選:A10、D【解析】由雙曲線的性質(zhì),直接表示離心率,求.【詳解】由雙曲線方程可知,因為,所以,解得:,又,所以.故選:D【點睛】本題考查雙曲線基本性質(zhì),意在考查數(shù)形結(jié)合分析問題和解決問題能力,屬于中檔題型,一般求雙曲線離心率的方法:
直接法:直接求出,然后利用公式求解;2.公式法:,3.構(gòu)造法:根據(jù)條件,可構(gòu)造出的齊次方程,通過等式兩邊同時除以,進而得到關于的方程.11、B【解析】將圓的方程化成標準方程,即可求解.【詳解】解:.故選:B.12、C【解析】設等差數(shù)列的公差為∵∴∴∴∵∴當取最大值時,的值為或故選C二、填空題:本題共4小題,每小題5分,共20分。13、1717【解析】利用等差數(shù)列的前項和公式可求所有數(shù)的和.【詳解】100以內(nèi)的正整數(shù)中,被3除余1由小到大構(gòu)成等差數(shù)列,其首項為1,公差為3,共有項,它們的和為,故答案為:.14、【解析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【詳解】解:因為在中,,,,所以由余弦定理可得,所以,即,則故答案為:15、##【解析】設,根據(jù)直線與圓的位置關系即可求出【詳解】由于,設,所以點既在直線上,又在圓上,即直線與圓有交點,所以,,即故答案為:16、##【解析】分析可知,結(jié)合空間向量數(shù)量積的坐標運算可求得結(jié)果.【詳解】由已知可得,,因為,則,即,解得.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)設數(shù)首項為,公差為,由,,列出方程組,求得,,即可求出數(shù)列的通項公式;(2),利用列項相消求和法即可得出答案.【詳解】(1)設數(shù)首項為,公差為,由題得.解得,,(負值舍去)所以;(2)由(1)得則.18、(1)答案見解析(2)答案見解析【解析】(1)求導數(shù),分和,兩種情況討論,即可求得的單調(diào)性;(2)令,利用導數(shù)求得單調(diào)遞增,結(jié)合,得到,進而證得.【詳解】(1)由函數(shù),可得,當時,,在內(nèi)單調(diào)遞減;當時,由有,當時,,單調(diào)遞減;當時,,單調(diào)遞增.(2)證明:令,則,當時,,單調(diào)遞增,因為,所以,即,當時,可得,即【點睛】利用導數(shù)證明不等式常見類型及解題策略(1)構(gòu)造差函數(shù).根據(jù)差函數(shù)導函數(shù)符號,確定差函數(shù)單調(diào)性,利用單調(diào)性得不等量關系,進而證明不等式.(2)根據(jù)條件,尋找目標函數(shù).一般思路為利用條件將求和問題轉(zhuǎn)化為對應項之間大小關系,或利用放縮、等量代換將多元函數(shù)轉(zhuǎn)化為一元函數(shù).19、(1);(2).【解析】(1)由焦距為解出,再把點代入橢圓方程中,即可解出答案.(2)根據(jù)題意求出當直線與軸重合時,由求出值,即求出的方程為.故只需證:當直線與軸不重合時,上任意一點均使,設出直線方程與橢圓進行聯(lián)立,化簡得證,即可得到答案.【小問1詳解】.由于點在橢圓C上,則故橢圓C的方程為.【小問2詳解】當直線與軸重合時,是橢圓的左右頂點,不妨設,設,則是上的任意一點,即方程對任意實數(shù)都成立,此時的方程為.故只需證:當直線與軸不重合時,上任意一點均使即可,設直線的方程為,,設則由y得證.故的方程為.20、(1),(2)【解析】利用正余弦定理化簡即求解A和B的大小利用正弦定理把CN、CM表示出來,結(jié)合三角函數(shù)的性質(zhì),即可求解的面積的最小值【詳解】解:,由正弦定理得:,,,可得,即;,由由余弦定理可得:,,如圖所示:設,,在中由正弦定理,得,由可知,,所以:,同理,由于,故,此時故的面積的最小值為【點睛】本題考查了正余弦定理的應用,三角函數(shù)的有界限求解最值范圍,考查了推理能力與計算能力,屬于中檔題21、(1)或;(2)或.【解析】(1)由圓的方程可得圓心和半徑,當直線斜率不存在時,知與圓相切,滿足題意;當直線斜率存在時,利用圓心到直線距離等于半徑可構(gòu)造方程求得,由此可得方程;(2)當直線斜率不存在時,知與圓相切,不合題意;當直線斜率存在時,利用垂徑定理可構(gòu)造方程求得,由此可得方程.【小問1詳解】由圓的方程知:圓心,半徑;當直線斜率不存在,即時,與圓相切,滿足題意;當直線斜率存在時,設,即,圓心到直線距離,解得:,,即;綜上所述:直線方程為或;【小問2詳解】當直線斜率不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年智能物流設備融資合同協(xié)議
- 老年高血壓患者α受體阻滯劑與多沙唑嗪聯(lián)用致首劑低血壓風險防范方案
- 建筑工程檔案管理制度內(nèi)容
- 老年高血壓合并2型糖尿病個體化降壓方案
- 村級集體經(jīng)濟組織財務公開及監(jiān)管制度
- 老年骨質(zhì)疏松患者的社會支持系統(tǒng)構(gòu)建
- 2025內(nèi)蒙古呼倫貝爾市國資委所屬事業(yè)單位引進人才1人備考題庫及答案詳解(奪冠系列)
- 2025東風汽車集團股份有限公司財務控制部招聘4人備考題庫含答案詳解
- 2026江蘇南京大學XZ2026-002計算機學院助理招聘備考題庫及完整答案詳解一套
- 老年跌倒預防的跌倒預防的社區(qū)干預措施優(yōu)化
- 2025年秋季散學典禮校長講話:以四馬精神赴新程攜溫暖期許啟寒假
- 2026貴州省黔晟國有資產(chǎn)經(jīng)營有限責任公司面向社會招聘中層管理人員2人備考考試試題及答案解析
- 2025年營養(yǎng)師考試練習題及答案
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責任公司社會成熟人才招聘備考題庫及答案詳解一套
- 消費者權(quán)益保護與投訴處理手冊(標準版)
- 南京航空航天大學飛行器制造工程考試試題及答案
- 陶瓷工藝品彩繪師改進水平考核試卷含答案
- 2025廣東百萬英才匯南粵惠州市市直事業(yè)單位招聘急需緊缺人才31人(公共基礎知識)測試題附答案
- 粉塵防護知識課件
- 注塑模具調(diào)試員聘用協(xié)議
- (2025年)糧食和物資儲備局招聘考試題庫(答案+解析)
評論
0/150
提交評論