版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省常德市臨澧一中2026屆高一數(shù)學第一學期期末監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知圓:與圓:,則兩圓的公切線條數(shù)為A.1條 B.2條C.3條 D.4條2.中國宋代的數(shù)學家秦九韶曾提出“三斜求積術(shù)”,即假設(shè)在平面內(nèi)有一個三角形,邊長分別為,,,三角形的面積可由公式求得,其中為三角形周長的一半,這個公式也被稱為海倫秦九韶公式,現(xiàn)有一個三角形的邊長滿足,,則此三角形面積的最大值為()A.6 B.C.12 D.3.已知點落在角的終邊上,且∈[0,2π),則的值為()A B.C. D.4.已知函數(shù),對于任意,且,均存在唯一實數(shù),使得,且,若關(guān)于的方程有4個不相等的實數(shù)根,則的取值范圍是A. B.C. D.5.對任意正實數(shù),不等式恒成立,則實數(shù)的取值范圍是()A. B.C. D.6.設(shè),則函數(shù)的零點所在的區(qū)間為()A. B.C. D.7.簡諧運動可用函數(shù)表示,則這個簡諧運動的初相為()A. B.C. D.8.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B.C. D.9.已知集合,,則()A B.C. D.{1,2,3}10.已知函數(shù)(),對于給定的一個實數(shù),點的坐標可能是()A.(2,1) B.(2,-2)C.(2,-1) D.(2,0)二、填空題:本大題共6小題,每小題5分,共30分。11.已知定義域為R的函數(shù),滿足,則實數(shù)a的取值范圍是______12.如圖,二面角的大小是30°,線段,與所成的角為45°,則與平面所成角的正弦值是__________13.已知銳角三角形的邊長分別為1,3,,則的取值范圍是__________14.已知,,且,若不等式恒成立,則實數(shù)m的取值范圍為______15.已知向量,,則向量在方向上的投影為___________.16.若則______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)是定義在上的增函數(shù),且.(1)求的值;(2)若,解不等式.18.(1)已知是角終邊上一點,求,,的值;(2)已知,求下列各式的值:①;②19.如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.(Ⅰ)證明:BC1//平面A1CD;(Ⅱ)設(shè)AA1=AC=CB=2,AB=2,求三棱錐C一A1DE的體積.20.已知,(1)當且x是第四象限角時,求的值;(2)若關(guān)于x的方程有實數(shù)根,求a的最小值21.已知函數(shù)(,,),其部分圖像如圖所示.(1)求函數(shù)的解析式;(2)若,且,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】求出兩圓的圓心與半徑,利用圓心距判斷兩圓外離,公切線有4條【詳解】圓C1:x2+y2﹣2x=0化為標準形式是(x﹣1)2+y2=1,圓心是C1(1,0),半徑是r1=1;圓C2:x2+y2﹣4y+3=0化為標準形式是x2+(y﹣2)2=1,圓心是C2(0,2),半徑是r2=1;則|C1C2|r1+r2,∴兩圓外離,公切線有4條故選D【點睛】本題考查了兩圓的一般方程與位置關(guān)系應用問題,是基礎(chǔ)題2、B【解析】根據(jù)海倫秦九韶公式和基本不等式直接計算即可.【詳解】由題意得:,,當且僅當,即時取等號,故選:B3、D【解析】由點的坐標可知是第四象限的角,再由可得的值【詳解】由知角是第四象限的角,∵,θ∈[0,2π),∴.故選:D【點睛】此題考查同角三角函數(shù)的關(guān)系,考查三角函數(shù)的定義,屬于基礎(chǔ)題4、A【解析】解:由題意可知f(x)在[0,+∞)上單調(diào)遞增,值域為[m,+∞),∵對于任意s∈R,且s≠0,均存在唯一實數(shù)t,使得f(s)=f(t),且s≠t,∴f(x)在(﹣∞,0)上是減函數(shù),值域為(m,+∞),∴a<0,且﹣b+1=m,即b=1﹣m∵|f(x)|=f()有4個不相等的實數(shù)根,∴0<f()<﹣m,又m<﹣1,∴0m,即0<(1)m<﹣m,∴﹣4<a<﹣2,∴則a的取值范圍是(﹣4,﹣2),故選A點睛:本題中涉及根據(jù)函數(shù)零點求參數(shù)取值,是高考經(jīng)常涉及的重點問題,(1)利用零點存在的判定定理構(gòu)建不等式求解;(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解,如果涉及由幾個零點時,還需考慮函數(shù)的圖象與參數(shù)的交點個數(shù);(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.5、C【解析】先根據(jù)不等式恒成立等價于,再根據(jù)基本不等式求出,即可求解.【詳解】解:,即,即又當且僅當“”,即“”時等號成立,即,故.故選:C.6、B【解析】根據(jù)的單調(diào)性,結(jié)合零點存在性定理,即可得出結(jié)論.【詳解】在單調(diào)遞增,且,根據(jù)零點存在性定理,得存在唯一的零點在區(qū)間上.故選:B【點睛】本題考查判斷函數(shù)零點所在區(qū)間,結(jié)合零點存在性定理的應用,屬于基礎(chǔ)題.7、B【解析】根據(jù)初相定義直接可得.【詳解】由初相定義可知,當時的相位稱為初相,所以,函數(shù)的初相為.故選:B8、D【解析】根據(jù)基本初等函數(shù)的單調(diào)性及復合函數(shù)單調(diào)性求解.【詳解】當時,在上單調(diào)遞減,所以在區(qū)間上為增函數(shù);由指數(shù)函數(shù)單調(diào)性知在區(qū)間上單調(diào)遞增;由在區(qū)間上為增函數(shù),為增函數(shù),可知在區(qū)間上為增函數(shù);知在區(qū)間上為減函數(shù).故選:D9、A【解析】利用并集概念進行計算.【詳解】.故選:A10、D【解析】直接代入,利用為奇函數(shù)的性質(zhì),得到整體的和為定值.【詳解】易知是奇函數(shù),則即的橫坐標與縱坐標之和為定值2.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】先判斷函數(shù)奇偶性,再判斷函數(shù)的單調(diào)性,從而把條件不等式轉(zhuǎn)化為簡單不等式.【詳解】由函數(shù)定義域為R,且,可知函數(shù)為奇函數(shù).,令則,令則即在定義域R上單調(diào)遞增,又,由此可知,當時,即,函數(shù)即為減函數(shù);當時,即,函數(shù)即為增函數(shù),故函數(shù)在R上的最小值為,可知函數(shù)在定義域為R上為增函數(shù).根據(jù)以上兩個性質(zhì),不等式可化為,不等式等價于即解之得或故答案為12、【解析】過點A作平面β的垂線,垂足為C,在β內(nèi)過C作l的垂線,垂足為D.連結(jié)AD,由CD⊥l,AC⊥l得,l⊥面ACD,可得AD⊥l,因此,∠ADC為二面角α?l?β的平面角,∠ADC=30°又∵AB與l所成角為45°,∴∠ABD=45°連結(jié)BC,可得BC為AB在平面β內(nèi)的射影,∴∠ABC為AB與平面β所成的角設(shè)AD=2x,則Rt△ACD中,AC=ADsin30°=x,Rt△ABD中,∴Rt△ABC中,故答案為.點睛:求直線和平面所成角的關(guān)鍵是作出這個平面的垂線進而斜線和射影所成角即為所求,有時當垂線較為難找時也可以借助于三棱錐的等體積法求得垂線長,進而用垂線長比上斜線長可求得所成角的正弦值,當空間關(guān)系較為復雜時也可以建立空間直角坐標系,利用向量求解.13、【解析】由三角形中三邊關(guān)系及余弦定理可得應滿足,解得,∴實數(shù)的取值范圍是答案:點睛:根據(jù)三角形的形狀判斷邊滿足的條件時,需要綜合考慮邊的限制條件,在本題中要注意銳角三角形這一條件的運用,必須要考慮到三個內(nèi)角的余弦值都要大于零,并由此得到不等式,進一步得到邊所要滿足的范圍14、【解析】由基本不等式求得的最小值,解不等式可得的范圍【詳解】∵,,,,∴,當且僅當,即時等號成立,∴的最小值為8,由解得,故答案為:15、【解析】直接利用投影的定義求在方向上的投影.【詳解】因為,,設(shè)與夾角為,,則向量在方向上的投影為:.所以在方向上投影為故答案為:.16、【解析】三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)0(2)【解析】(1)直接利用賦值法,令即可得結(jié)果;(2)利用已知條件將不等式化為,結(jié)合單調(diào)性可得結(jié)果.【小問1詳解】令則有.【小問2詳解】∵∴,則可化為,即則,∵在上單調(diào)遞增∴,解得.即不等式的解集為.18、(1);;;(2)①;②【解析】(1)利用三角函數(shù)的定義即可求解.(2)求出,再利用齊次式即可求解.【詳解】(1)是角終邊上一點,則,,.(2)由,則,①.②19、(Ⅰ)見解析(Ⅱ)【解析】(Ⅰ)連接AC1交A1C于點F,則DF為三角形ABC1的中位線,故DF∥BC1.再根據(jù)直線和平面平行的判定定理證得BC1∥平面A1CD.(Ⅱ)由題意可得此直三棱柱的底面ABC為等腰直角三角形,由D為AB的中點可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.進而求得S△A1DE的值,再根據(jù)三棱錐C-A1DE的體積為?S△A1DE?CD,運算求得結(jié)果試題解析:(1)證明:連結(jié)AC1交A1C于點F,則F為AC1中點又D是AB中點,連結(jié)DF,則BC1∥DF.3分因DF?平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因為ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D為AB的中點,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.8分由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D10分所以三菱錐C﹣A1DE的體積為:==1.12分考點:直線與平面平行的判定;棱柱、棱錐、棱臺的體積20、(1)(2)1【解析】(1)根據(jù)立方差公式可知,要計算及的值就可以求解問題;(2)將方程轉(zhuǎn)化為,再分類討論即可求解.【小問1詳解】,即,則,即,所以因為x是第四像限角,所以,所以,所以【小問2詳解】由,可得,則方程可化為,①當時,,顯然方程無解;②當時,方程等價于又(當且僅當時取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 常州紡織服裝職業(yè)技術(shù)學院《化工原理二》2023-2024學年第二學期期末試卷
- 2026年一級建造師考試工程經(jīng)濟章節(jié)練習題及答案
- 租賃合同協(xié)議2025年水電費分攤方式
- 2025年注冊測繪師《測繪案例分析》題庫(含答案)
- 2025年(完整版)檔案管理職稱考試題庫及答案
- 2025中小學教師職稱晉升水平能力測試題(附含答案)
- 某模具廠隱患排查治理方案
- 某輪胎廠模具預熱實施細則
- 化工科研人員培訓
- 化工工藝學鄧建強課件
- 醫(yī)院保安考試試題及答案
- 第四屆全國儀器儀表行業(yè)職業(yè)技能競賽-無人機裝調(diào)檢修工(儀器儀表檢測)理論考試題庫(含答案)
- 國家職業(yè)技術(shù)技能標準 4-10-01-05 養(yǎng)老護理員 人社廳發(fā)201992號
- 急性梗阻性化膿性膽管炎護理
- 2024深海礦產(chǎn)資源開采系統(tǒng)技術(shù)指南
- 2022通達經(jīng)營性物業(yè)貸調(diào)查報告
- 立式氣液分離器計算
- 財務(wù)每日工作匯報表格
- 2022-2023學年廣東省佛山市南海區(qū)、三水區(qū)九年級(上)期末數(shù)學試卷含解析
- 物流工業(yè)園區(qū)總體規(guī)劃
- 飛行機組失能的處置
評論
0/150
提交評論