版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2016年四川省成都市青羊區(qū)中考數(shù)學(xué)二診試卷一、選擇題(共10小題,每小題3分,滿分30分)1下列各數(shù)中,最小的數(shù)是()a b0 c1 d32計算2x2(3x3)的結(jié)果是()a6x5b6x5c2x6d2x63如圖,裝修工人向墻上釘木條若2=110,要使木條b與a平行,則1的度數(shù)等于()a55 b70 c90 d1104不等式5+2x1的解集在數(shù)軸上表示正確的是()a b c d5自成都地鐵4號線開通以來,成都地鐵1、2、4號線線網(wǎng)客流增加明顯,再遇到春季糖酒會、桃花節(jié)、通勤客流等三股主要客流匯集,2016年3月25日,成都地鐵再創(chuàng)單日線網(wǎng)客流歷史新高,達(dá)到1738200乘次,用科學(xué)記數(shù)法表示1
2、738200為(保留三個有效數(shù)字)()a1.74106b1.73106c17.4105d17.31056下列如圖是由5個相同大小的正方體搭成的幾何體,則它的俯視圖是()a b c d7一組數(shù)據(jù)3、5、8、3、4的眾數(shù)與中位數(shù)分別是()a3,8 b3,3 c3,4 d4,38同學(xué)們玩過滾鐵環(huán)嗎?當(dāng)鐵環(huán)的半徑是30cm,手柄長40cm當(dāng)手柄的一端勾在環(huán)上,另一端到鐵環(huán)的圓心的距離為50cm時,鐵環(huán)所在的圓與手柄所在的直線的位置關(guān)系為()a相離 b相交 c相切 d不能確定9某縣為發(fā)展教育事業(yè),加強(qiáng)了對教育經(jīng)費的投入,2012年投入3000萬元,預(yù)計2014年投入5000萬元設(shè)教育經(jīng)費的年平均增長率為
3、x,根據(jù)題意,下面所列方程正確的是()a3000x2=5000 b3000(1+x)2=5000c3000(1+x%)2=5000 d3000(1+x)+3000(1+x)2=500010正方形abcd在坐標(biāo)系中的位置如圖所示,將正方形abcd繞d點順時針方向旋轉(zhuǎn)90后,b點到達(dá)的位置坐標(biāo)為()a(2,2) b(4,1) c(3,1) d(4,0)二、填空題(共4小題,每小題4分,滿分16分)11點m(2,3)關(guān)于y軸對稱的對稱點n的坐標(biāo)是12如圖,人民幣舊版壹角硬幣內(nèi)部的正多邊形每個內(nèi)角度數(shù)是13一個不透明的布袋中,放有3個白球,5個紅球,它們除顏色外完全相同,從中隨機(jī)摸取1個,摸到紅球的概
4、率是14如圖,在平面直角坐標(biāo)系中,過點m(3,2)分別作x軸、y軸的垂線與反比例函數(shù)y=的圖象交于a、b兩點,則四邊形maob的面積為三、解答題(共14小題,滿分104分)15(1)計算:|3|+tan300+()2(2)解不等式組,并把其解集在數(shù)軸上表示出來16化簡,求值:,其中m=17如圖所示,秋千鏈子的長度為3m,靜止時的秋千踏板(大小忽略不計)距地面0.5m秋千向兩邊擺動時,若最大擺角(擺角指秋千鏈子與鉛垂線的夾角)約為53,則秋千踏板與地面的最大距離約為多少?(參考數(shù)據(jù):sin530.8,cos530.6)18某校七年級有200名學(xué)生參加了全國中小學(xué)生安全知識競賽初賽,為了了解本校初
5、賽的成績情況,從中抽取了50名學(xué)校,將他們的初賽成績(得分為整數(shù),滿分100分)分成五組:第一組49.559.5;第二組59.569.5;第三組69.579.5;第四組79.589.5;第五組89.5100.5統(tǒng)計后得到如圖所示的頻數(shù)分布直方圖(部分)觀察圖形的信息,回答下列問題:(1)第四組的頻數(shù)為(直接寫答案);(2)若將得分轉(zhuǎn)化為等級,規(guī)定:得分低于59.5分評為“d”,59.569.5分評分“c”,69.589.5分評為“b”,89.5100.5分評為“a”,那么這200名參加初賽的學(xué)生中,參賽成績評為“d”的學(xué)生約有個(直接填空答案)(3)若將抽取出來的50名學(xué)生中成績落在第四、第五
6、組的學(xué)生組成一個培訓(xùn)小組,再從這個培訓(xùn)小組中隨機(jī)挑選2名學(xué)生參加決賽,用列表法或畫樹狀圖法求:挑選的2名學(xué)生的初賽成績恰好都在90分以上的概率19如圖,點p的坐標(biāo)為(2,),過點p作x軸的平行線交y軸于點a,作pbap交反比例函數(shù)y=(x0)于點b,連結(jié)ab已知tanbap=(1)求k的值;(2)求直線ab的解析式20如圖,點d是o的直徑ca延長線上一點,點b在o上,且dba=bcd(1)證明:bd是o的切線(2)若點e是劣弧bc上一點,ae與bc相交于點f,且bef的面積為16,cosbfa=,那么,你能求出acf的面積嗎?若能,請你求出其面積;若不能,請說明理由21已知一元二次方程x24x
7、3=0的兩根為m、n,則m23mn+n2=22如圖所示,某漁船在海面上朝正東方向勻速航行,在a處觀測到燈塔m在北偏東60方向上,航行半小時后到達(dá)b處,此時觀測到燈塔m在北偏東30方向上,那么該船繼續(xù)航行分鐘可使?jié)O船到達(dá)離燈塔距離最近的位置23已知拋物線p:y=ax2+bx+c的頂點為c,與x軸相交于a、b兩點(點a在點b的左側(cè)),點c關(guān)于x軸的對稱點為c,我們稱以a為頂點且過點c,對稱軸與y軸平行的拋物線為拋物線p的“關(guān)聯(lián)”拋物線,直線ac為拋物線p的“關(guān)聯(lián)”直線若一條拋物線的“關(guān)聯(lián)”拋物線和“關(guān)聯(lián)”直線分別是y=x2+2x+1和y=2x+2,則這條拋物線的解析式為24在平面直角坐標(biāo)系xoy中
8、,以原點o為圓心的圓過點a(13,0),直線y=kx3k+4與o交于b、c兩點,則弦bc的長的最小值為25如圖,菱形abcd中,ab=ac,點e、f分別為邊ab、bc上的點,且ae=bf,連接ce、af交于點h,連接dh交ag于點o則下列結(jié)論abfcae,ahc=120,ah+ch=dh,ad2=oddh中,正確的是26今年清明假期,小王組織朋友取九寨溝三日游,經(jīng)了解,現(xiàn)有甲、乙兩家旅行社比較合適,報價均為每人640元,且提供的服務(wù)完全相同針對組團(tuán)三日游的游客,甲旅行社表示,每人都按8.5折收費;乙旅行設(shè)表示,若人數(shù)不超過20人,每人都按9折收費;超過20人,則超出部分每人按7.5折收費假設(shè)組
9、團(tuán)參加甲、乙兩家旅行社三日游的人數(shù)均為x人(1)請分別寫出甲、乙兩家旅行設(shè)收取組團(tuán)三日游的總費用y(元)與x(人)之間函數(shù)關(guān)系式(2)若小王組團(tuán)參加三日游的人數(shù)共有25人,請你通過計算,在甲、乙兩家旅行社中,幫助小王選擇收取總費用較少的一家27如圖1所示,一張三角形紙片abc,acb=90,ac=8,bc=6,沿斜邊ab的中線cd把這張紙片剪成ac1d1和bc2d2兩個三角形(如圖2所示)將紙片ac1d1沿直線d2b(ab方向)平移(點a,d1,d2,b始終在同一直線上),當(dāng)d1與點b重合時,停止平移在平移的過程中,c1d1與bc2交于點e,ac1與c2d2、bc2分別交于點f、p(1)當(dāng)ac
10、1d1平移到如圖3所示位置時,猜想d1e與d2f的數(shù)量關(guān)系,并說明理由(2)設(shè)平移距離d2d1為x,ac1d1和bc2d2重復(fù)部分面積為y,請寫出y與x的函數(shù)關(guān)系式,以及自變量的取值范圍;(3)對于(2)中的結(jié)論是否存在這樣的x,使得重復(fù)部分面積等于原abc紙片面積的?若存在,請求出x的值;若不存在,請說明理由28已知拋物線y=(a0)與x軸交于a、b,與y軸相交于點c,且點a在點b的左側(cè)(1)若拋物線過點d(2,2),求實數(shù)a的值(2)在(1)的條件下,在拋物線的對稱軸上找一點e,使ae+ce最小,求出點e的坐標(biāo)(3)在第一象限內(nèi),拋物線上是否存在點m,使得以a、b、m為頂點的三角形與acb
11、相似?若存在,求出a的值,若不存在,請說明理由2016年四川省成都市青羊區(qū)中考數(shù)學(xué)二診試卷參考答案與試題解析一、選擇題(共10小題,每小題3分,滿分30分)1下列各數(shù)中,最小的數(shù)是()a b0 c1 d3【考點】有理數(shù)大小比較【分析】根據(jù)有理數(shù)大小比較的法則依次判斷即可:正數(shù)都大于0; 負(fù)數(shù)都小于0;正數(shù)大于一切負(fù)數(shù); 兩個負(fù)數(shù),絕對值大的其值反而小【解答】解:根據(jù)有理數(shù)大小比較的法則可直接判斷出:310,即dcba故選d2計算2x2(3x3)的結(jié)果是()a6x5b6x5c2x6d2x6【考點】同底數(shù)冪的乘法;單項式乘單項式【分析】根據(jù)單項式乘單項式的法則和同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加計算
12、后選取答案【解答】解:2x2(3x3),=2(3)(x2x3),=6x5故選:a3如圖,裝修工人向墻上釘木條若2=110,要使木條b與a平行,則1的度數(shù)等于()a55 b70 c90 d110【考點】平行線的性質(zhì)【分析】由已知木條b與a平行,所以得到3=2,又3+1=180,從而求出1的度數(shù)【解答】解:已知ab,3=2=110,又3+1=180,1=1803=180110=70故選:b4不等式5+2x1的解集在數(shù)軸上表示正確的是()a b c d【考點】在數(shù)軸上表示不等式的解集;解一元一次不等式【分析】先解不等式得到x2,根據(jù)數(shù)軸表示數(shù)的方法得到解集在2的左邊【解答】解:5+2x1,移項得2x
13、4,系數(shù)化為1得x2故選c5自成都地鐵4號線開通以來,成都地鐵1、2、4號線線網(wǎng)客流增加明顯,再遇到春季糖酒會、桃花節(jié)、通勤客流等三股主要客流匯集,2016年3月25日,成都地鐵再創(chuàng)單日線網(wǎng)客流歷史新高,達(dá)到1738200乘次,用科學(xué)記數(shù)法表示1738200為(保留三個有效數(shù)字)()a1.74106b1.73106c17.4105d17.3105【考點】科學(xué)記數(shù)法與有效數(shù)字【分析】根據(jù)科學(xué)記數(shù)法的表示方法:a10n,有效數(shù)字是從第一個不為零的數(shù)字起都是有效數(shù)字,可得答案【解答】解:用科學(xué)記數(shù)法表示1738200為1.74106,故選:a6下列如圖是由5個相同大小的正方體搭成的幾何體,則它的俯視
14、圖是()a b c d【考點】簡單組合體的三視圖【分析】找到從正面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在主視圖中【解答】解:人站在幾何體的正面,從上往下看,正方形個數(shù)從左到右依次為1,1,2,故選c7一組數(shù)據(jù)3、5、8、3、4的眾數(shù)與中位數(shù)分別是()a3,8 b3,3 c3,4 d4,3【考點】眾數(shù);中位數(shù)【分析】根據(jù)中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù)【解答】解:把這組數(shù)據(jù)從小到大排列:3、3、4、5、8,3出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是3處于中間
15、位置的那個數(shù)是4,由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是4;故選c8同學(xué)們玩過滾鐵環(huán)嗎?當(dāng)鐵環(huán)的半徑是30cm,手柄長40cm當(dāng)手柄的一端勾在環(huán)上,另一端到鐵環(huán)的圓心的距離為50cm時,鐵環(huán)所在的圓與手柄所在的直線的位置關(guān)系為()a相離 b相交 c相切 d不能確定【考點】直線與圓的位置關(guān)系【分析】根據(jù)題意畫出相應(yīng)的圖形,由三角形abc的三邊,利用勾股定理的逆定理得出acb=90,根據(jù)垂直定義得到ac與bc垂直,再利用切線的定義:過半徑外端點且與半徑垂直的直線為圓的切線,得到ac為圓b的切線,可得出此時鐵環(huán)所在的圓與手柄所在的直線的位置關(guān)系為相切【解答】解:根據(jù)題意畫出圖形,如圖所示:由已知得:
16、bc=30cm,ac=40cm,ab=50cm,bc2+ac2=302+402=900+1600=2500,ab2=502=2500,bc2+ac2=ab2,acb=90,即acbc,ac為圓b的切線,則此時鐵環(huán)所在的圓與手柄所在的直線的位置關(guān)系為相切故選c9某縣為發(fā)展教育事業(yè),加強(qiáng)了對教育經(jīng)費的投入,2012年投入3000萬元,預(yù)計2014年投入5000萬元設(shè)教育經(jīng)費的年平均增長率為x,根據(jù)題意,下面所列方程正確的是()a3000x2=5000 b3000(1+x)2=5000c3000(1+x%)2=5000 d3000(1+x)+3000(1+x)2=5000【考點】由實際問題抽象出一元
17、二次方程【分析】增長率問題,一般用增長后的量=增長前的量(1+增長率),參照本題,如果設(shè)教育經(jīng)費的年平均增長率為x,根據(jù)“2012年投入3000萬元,預(yù)計2014年投入5000萬元”,可以分別用x表示2012以后兩年的投入,然后根據(jù)已知條件可得出方程【解答】解:設(shè)教育經(jīng)費的年平均增長率為x,則2013的教育經(jīng)費為:3000(1+x)萬元,2014的教育經(jīng)費為:3000(1+x)2萬元,那么可得方程:3000(1+x)2=5000故選b10正方形abcd在坐標(biāo)系中的位置如圖所示,將正方形abcd繞d點順時針方向旋轉(zhuǎn)90后,b點到達(dá)的位置坐標(biāo)為()a(2,2) b(4,1) c(3,1) d(4,
18、0)【考點】坐標(biāo)與圖形變化-旋轉(zhuǎn)【分析】利用網(wǎng)格結(jié)構(gòu)找出點b繞點d順時針旋轉(zhuǎn)90后的位置,然后根據(jù)平面直角坐標(biāo)系寫出點的坐標(biāo)即可【解答】解:如圖,點b繞點d順時針旋轉(zhuǎn)90到達(dá)點b,點b的坐標(biāo)為(4,0)故選:d二、填空題(共4小題,每小題4分,滿分16分)11點m(2,3)關(guān)于y軸對稱的對稱點n的坐標(biāo)是(2,3)【考點】關(guān)于x軸、y軸對稱的點的坐標(biāo)【分析】根據(jù)關(guān)于y軸對稱點的坐標(biāo)特點:橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變可得答案【解答】解:點m(2,3)關(guān)于y軸對稱的對稱點n的坐標(biāo)是(2,3),故答案為:(2,3)12如圖,人民幣舊版壹角硬幣內(nèi)部的正多邊形每個內(nèi)角度數(shù)是140【考點】多邊形內(nèi)角與外角【
19、分析】根據(jù)多邊形的內(nèi)角和公式即可得出結(jié)果【解答】解:九邊形的內(nèi)角和=(92)180=1260,又九邊形的每個內(nèi)角都相等,每個內(nèi)角的度數(shù)=12609=140故答案為:14013一個不透明的布袋中,放有3個白球,5個紅球,它們除顏色外完全相同,從中隨機(jī)摸取1個,摸到紅球的概率是【考點】概率公式【分析】先求出球的總個數(shù),再用紅球的個數(shù)球的總個數(shù)可得紅球的概率【解答】解:口袋中有3個白球,5個紅球,共有8個球,摸到紅球的概率是;故答案為:14如圖,在平面直角坐標(biāo)系中,過點m(3,2)分別作x軸、y軸的垂線與反比例函數(shù)y=的圖象交于a、b兩點,則四邊形maob的面積為8【考點】反比例函數(shù)系數(shù)k的幾何意義
20、【分析】設(shè)點a的坐標(biāo)為(a,b),點b的坐標(biāo)為(c,d),根據(jù)反比例函數(shù)y=的圖象過a,b兩點,所以ab=2,cd=2,進(jìn)而得到saoc=|ab|=1,sbod=|cd|=1,s矩形mcdo=32=6,根據(jù)四邊形maob的面積=saoc+sbod+s矩形mcdo,即可解答【解答】解:如圖,設(shè)點a的坐標(biāo)為(a,b),點b的坐標(biāo)為(c,d),反比例函數(shù)y=的圖象過a,b兩點,ab=2,cd=2,saoc=|ab|=1,sbod=|cd|=1,點m(3,2),s矩形mcdo=32=6,四邊形maob的面積=saoc+sbod+s矩形mcdo=1+1+6=8,故答案為:8三、解答題(共14小題,滿分1
21、04分)15(1)計算:|3|+tan300+()2(2)解不等式組,并把其解集在數(shù)軸上表示出來【考點】實數(shù)的運算;在數(shù)軸上表示不等式的解集;解一元一次不等式組【分析】(1)原式第一項利用絕對值的代數(shù)意義化簡,第二項利用特殊角的三角函數(shù)值計算,第三項利用立方根定義計算,第四項利用零指數(shù)冪法則計算,最后一項利用負(fù)整數(shù)指數(shù)冪法則計算即可得到結(jié)果;(2)分別求出不等式組中兩不等式的解集,找出解集的公共部分求出不等式組的解集,表示在數(shù)軸上即可【解答】解:(1)原式=3+21+9=3+13+9=10;(2),由得:x5,由得:x2,則不等式組的解集為2x516化簡,求值:,其中m=【考點】分式的化簡求值
22、【分析】先根據(jù)分式的混合運算法則把分式化簡,再把m=代入求解即可求得答案【解答】解:原式=,=,=,=,=,=當(dāng)m=時,原式=17如圖所示,秋千鏈子的長度為3m,靜止時的秋千踏板(大小忽略不計)距地面0.5m秋千向兩邊擺動時,若最大擺角(擺角指秋千鏈子與鉛垂線的夾角)約為53,則秋千踏板與地面的最大距離約為多少?(參考數(shù)據(jù):sin530.8,cos530.6)【考點】解直角三角形的應(yīng)用【分析】如圖所示,在abc中,bcac,ab=3,cab=53,故有ac=3cos5330.6=1.8,cd3+0.51.8=1.7,即be=cd=1.7m【解答】解:設(shè)秋千鏈子的上端固定于a處,秋千踏板擺動到最
23、高位置時踏板位于b處過點a,b的鉛垂線分別為ad,be,點d,e在地面上,過b作bcad于點c在rtabc中,ab=3,cab=53,cos53=,ac=3cos5330.6=1.8(m),cd3+0.51.8=1.7(m),be=cd1.7(m),答:秋千擺動時踏板與地面的最大距離約為1.7m18某校七年級有200名學(xué)生參加了全國中小學(xué)生安全知識競賽初賽,為了了解本校初賽的成績情況,從中抽取了50名學(xué)校,將他們的初賽成績(得分為整數(shù),滿分100分)分成五組:第一組49.559.5;第二組59.569.5;第三組69.579.5;第四組79.589.5;第五組89.5100.5統(tǒng)計后得到如圖所
24、示的頻數(shù)分布直方圖(部分)觀察圖形的信息,回答下列問題:(1)第四組的頻數(shù)為2(直接寫答案);(2)若將得分轉(zhuǎn)化為等級,規(guī)定:得分低于59.5分評為“d”,59.569.5分評分“c”,69.589.5分評為“b”,89.5100.5分評為“a”,那么這200名參加初賽的學(xué)生中,參賽成績評為“d”的學(xué)生約有64個(直接填空答案)(3)若將抽取出來的50名學(xué)生中成績落在第四、第五組的學(xué)生組成一個培訓(xùn)小組,再從這個培訓(xùn)小組中隨機(jī)挑選2名學(xué)生參加決賽,用列表法或畫樹狀圖法求:挑選的2名學(xué)生的初賽成績恰好都在90分以上的概率【考點】列表法與樹狀圖法;用樣本估計總體;頻數(shù)(率)分布直方圖【分析】(1)由
25、抽取了50名學(xué)生,結(jié)合直方圖,即可求得第四組的頻數(shù);(2)利用樣本即可估算總體,即可求得答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與挑選的2名學(xué)生的初賽成績恰好都在90分以上的情況,再利用概率公式即可求得答案【解答】解:(1)第四組的頻數(shù)為:501620102=2,故答案為:2;(2)參賽成績評為“d”的學(xué)生約有:200=64(個);故答案為:64;(3)畫樹狀圖得:共有12種等可能的結(jié)果,挑選的2名學(xué)生的初賽成績恰好都在90分以上的有2種情況,挑選的2名學(xué)生的初賽成績恰好都在90分以上的概率為: =19如圖,點p的坐標(biāo)為(2,),過點p作x軸的平行線交y軸于點a,作
26、pbap交反比例函數(shù)y=(x0)于點b,連結(jié)ab已知tanbap=(1)求k的值;(2)求直線ab的解析式【考點】反比例函數(shù)與一次函數(shù)的交點問題【分析】(1)由點p的坐標(biāo)可得出a點的坐標(biāo)以及線段ap的長度,通過解直角三角形可求出bp的長度,結(jié)合點p的坐標(biāo)即可得出b點的坐標(biāo),再利用待定系數(shù)法即可求出反比例函數(shù)的解析式;(2)設(shè)直線ab的解析式y(tǒng)=ax+b結(jié)合a、b點的坐標(biāo)利用待定系數(shù)法即可求出直線ab的解析式【解答】解:(1)點p的坐標(biāo)為(2,),ap=2,點a的坐標(biāo)為(0,)在rtabp中,apb=90,tanbap=,ap=2,bp=aptanbap=2=3,點b的坐標(biāo)為(2,)點b(2,)
27、在反比例函數(shù)y=(x0)圖象上,=,解得:k=9(2)設(shè)直線ab的解析式y(tǒng)=ax+b,則有,解得:直線ab的解析式為y=x+20如圖,點d是o的直徑ca延長線上一點,點b在o上,且dba=bcd(1)證明:bd是o的切線(2)若點e是劣弧bc上一點,ae與bc相交于點f,且bef的面積為16,cosbfa=,那么,你能求出acf的面積嗎?若能,請你求出其面積;若不能,請說明理由【考點】切線的判定【分析】(1)bd是o的切線先連接ob,由于ac是直徑,那么abc=90,得到bac+c=90,由oa=ob,得到bac=oba,證明obd=90,根據(jù)切線的判定定理證明;(2)由于cosbfa=,那么
28、=,證明ebfcaf,根據(jù)相似三角形的面積比等于相似比的平方計算即可【解答】解:(1)bd是o的切線,理由:如右圖所示,連接ob,ac是o的直徑,abc=90,bac+c=90,oa=ob,bac=oba,oba+c=90,abd=c,abd+oba=90,即obd=90,db是o的切線;(2)在rtabf中,cosbfa=,=,e=c,ebf=fac,ebfcaf,sbfe:safc=()2=,bef的面積為16,acf的面積為3621已知一元二次方程x24x3=0的兩根為m、n,則m23mn+n2=31【考點】根與系數(shù)的關(guān)系【分析】由m與n為已知方程的解,利用根與系數(shù)的關(guān)系求出m+n與mn
29、的值,將所求式子利用完全平方公式變形后,代入計算即可求出值【解答】解:m,n是一元二次方程x24x3=0的兩個根,m+n=4,mn=3,則m23mn+n2=(m+n)25mn=16+15=31故答案為:3122如圖所示,某漁船在海面上朝正東方向勻速航行,在a處觀測到燈塔m在北偏東60方向上,航行半小時后到達(dá)b處,此時觀測到燈塔m在北偏東30方向上,那么該船繼續(xù)航行15分鐘可使?jié)O船到達(dá)離燈塔距離最近的位置【考點】解直角三角形的應(yīng)用-方向角問題【分析】過m作ab的垂線,設(shè)垂足為n由題易知mab=30,mbn=60;則bma=bam=30,得bm=ab由此可在rtmbn中,根據(jù)bm(即ab)的長求出
30、bn的長,進(jìn)而可求出該船需要繼續(xù)航行的時間【解答】解:作mnab于n易知:mab=30,mbn=60,則bma=bam=30設(shè)該船的速度為x,則bm=ab=0.5xrtbmn中,mbn=60,bn=bm=0.25x故該船需要繼續(xù)航行的時間為0.25xx=0.25小時=15分鐘23已知拋物線p:y=ax2+bx+c的頂點為c,與x軸相交于a、b兩點(點a在點b的左側(cè)),點c關(guān)于x軸的對稱點為c,我們稱以a為頂點且過點c,對稱軸與y軸平行的拋物線為拋物線p的“關(guān)聯(lián)”拋物線,直線ac為拋物線p的“關(guān)聯(lián)”直線若一條拋物線的“關(guān)聯(lián)”拋物線和“關(guān)聯(lián)”直線分別是y=x2+2x+1和y=2x+2,則這條拋物線
31、的解析式為y=x22x3【考點】拋物線與x軸的交點【分析】先求出y=x2+2x+1和y=2x+2的交點c的坐標(biāo)為(1,4),再求出“關(guān)聯(lián)”拋物線y=x2+2x+1的頂點a坐標(biāo)(1,0),接著利用點c和點c關(guān)于x軸對稱得到c(1,4),則可設(shè)頂點式y(tǒng)=a(x1)24,然后把a點坐標(biāo)代入求出a的值即可得到原拋物線解析式【解答】解:y=x2+2x+1=(x+1)2,a點坐標(biāo)為(1,0),解方程組,得或,點c的坐標(biāo)為(1,4),點c和點c關(guān)于x軸對稱,c(1,4),設(shè)原拋物線解析式為y=a(x1)24,把a(1,0)代入得4a4=0,解得a=1,原拋物線解析式為y=(x1)24=x22x3故答案為:y
32、=x22x324在平面直角坐標(biāo)系xoy中,以原點o為圓心的圓過點a(13,0),直線y=kx3k+4與o交于b、c兩點,則弦bc的長的最小值為24【考點】一次函數(shù)綜合題【分析】根據(jù)直線y=kx3k+4必過點d(3,4),求出最短的弦cb是過點d且與該圓直徑垂直的弦,再求出od的長,再根據(jù)以原點o為圓心的圓過點a(13,0),求出ob的長,再利用勾股定理求出bd,即可得出答案【解答】解:直線y=kx3k+4=k(x3)+4,k(x3)=y4,k有無數(shù)個值,x3=0,y4=0,解得x=3,y=4,直線必過點d(3,4),最短的弦cb是過點d且與該圓直徑垂直的弦,點d的坐標(biāo)是(3,4),od=5,以
33、原點o為圓心的圓過點a(13,0),圓的半徑為13,ob=13,bd=12,bc的長的最小值為24;故答案為:2425如圖,菱形abcd中,ab=ac,點e、f分別為邊ab、bc上的點,且ae=bf,連接ce、af交于點h,連接dh交ag于點o則下列結(jié)論abfcae,ahc=120,ah+ch=dh,ad2=oddh中,正確的是【考點】相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);菱形的性質(zhì)【分析】由菱形abcd中,ab=ac,易證得abc是等邊三角形,則可得b=eac=60,由sas即可證得abfcae;則可得baf=ace,利用三角形外角的性質(zhì),即可求得ahc=120;在hd上截取hk=
34、ah,連接ak,易得點a,h,c,d四點共圓,則可證得ahk是等邊三角形,然后由aas即可證得akdahc,則可證得ah+ch=dh;易證得oadahd,由相似三角形的對應(yīng)邊成比例,即可得ad2=oddh【解答】解:四邊形abcd是菱形,ab=bc,ab=ac,ab=bc=ac,即abc是等邊三角形,同理:adc是等邊三角形b=eac=60,在abf和cae中,abfcae(sas);故正確;baf=ace,aeh=b+bce,ahc=baf+aeh=baf+b+bce=b+ace+bce=b+acb=60+60=120;故正確;在hd上截取hk=ah,連接ak,ahc+adc=120+60=
35、180,點a,h,c,d四點共圓,ahd=acd=60,ach=adh,ahk是等邊三角形,ak=ah,akh=60,akd=ahc=120,在akd和ahc中,akdahc(aas),ch=dk,dh=hk+dk=ah+ch;故正確;oad=ahd=60,oda=adh,oadahd,ad:dh=od:ad,ad2=oddh故正確故答案為:26今年清明假期,小王組織朋友取九寨溝三日游,經(jīng)了解,現(xiàn)有甲、乙兩家旅行社比較合適,報價均為每人640元,且提供的服務(wù)完全相同針對組團(tuán)三日游的游客,甲旅行社表示,每人都按8.5折收費;乙旅行設(shè)表示,若人數(shù)不超過20人,每人都按9折收費;超過20人,則超出部
36、分每人按7.5折收費假設(shè)組團(tuán)參加甲、乙兩家旅行社三日游的人數(shù)均為x人(1)請分別寫出甲、乙兩家旅行設(shè)收取組團(tuán)三日游的總費用y(元)與x(人)之間函數(shù)關(guān)系式(2)若小王組團(tuán)參加三日游的人數(shù)共有25人,請你通過計算,在甲、乙兩家旅行社中,幫助小王選擇收取總費用較少的一家【考點】一次函數(shù)的應(yīng)用【分析】(1)根據(jù)甲乙兩家旅行社的收費標(biāo)準(zhǔn)列出式子即可(2)利用(1)的結(jié)論代入計算即可【解答】解:(1)y甲=544x,y乙=,即y乙=(2)x=25時,y甲=13600,y乙=13920,甲比較便宜27如圖1所示,一張三角形紙片abc,acb=90,ac=8,bc=6,沿斜邊ab的中線cd把這張紙片剪成ac
37、1d1和bc2d2兩個三角形(如圖2所示)將紙片ac1d1沿直線d2b(ab方向)平移(點a,d1,d2,b始終在同一直線上),當(dāng)d1與點b重合時,停止平移在平移的過程中,c1d1與bc2交于點e,ac1與c2d2、bc2分別交于點f、p(1)當(dāng)ac1d1平移到如圖3所示位置時,猜想d1e與d2f的數(shù)量關(guān)系,并說明理由(2)設(shè)平移距離d2d1為x,ac1d1和bc2d2重復(fù)部分面積為y,請寫出y與x的函數(shù)關(guān)系式,以及自變量的取值范圍;(3)對于(2)中的結(jié)論是否存在這樣的x,使得重復(fù)部分面積等于原abc紙片面積的?若存在,請求出x的值;若不存在,請說明理由【考點】幾何變換綜合題【分析】(1)根據(jù)ad1=bd2就可以證明ad2=bd1,根據(jù)等角對等邊證明ad2=d2f,d1e=d1b即可(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB 4053.3-2025固定式金屬梯及平臺安全要求第3部分:工業(yè)防護(hù)欄桿及平臺
- 蔬菜宣傳活動策劃方案(3篇)
- 路基施工方案事例(3篇)
- 春節(jié)白酒活動策劃方案(3篇)
- 污水導(dǎo)向施工方案(3篇)
- 政治比賽活動方案策劃(3篇)
- 蓋體施工方案(3篇)
- 2025年酒店服務(wù)流程與操作手冊
- 人力資源盤點方案
- 2025年大學(xué)統(tǒng)計(統(tǒng)計學(xué)原理)試題及答案
- 中小企業(yè)主的家庭財富管理方案
- 專題03 基本不等式(期末壓軸專項訓(xùn)練20題)(原卷版)-25學(xué)年高一數(shù)學(xué)上學(xué)期期末考點大串講(人教A版必修一)
- 檔案管理基本知識課件
- 臨床硬膜下血腫患者中醫(yī)護(hù)理查房
- 正規(guī)裝卸合同范本
- 科研設(shè)計及研究生論文撰寫智慧樹知到期末考試答案章節(jié)答案2024年浙江中醫(yī)藥大學(xué)
- 2024年江蘇省普通高中學(xué)業(yè)水平測試小高考生物、地理、歷史、政治試卷及答案(綜合版)
- 土力學(xué)與地基基礎(chǔ)(課件)
- 精神分裂癥等精神病性障礙臨床路徑表單
- 提撈采油安全操作規(guī)程
- 管道安全檢查表
評論
0/150
提交評論