課標通用2018年高考數(shù)學一輪復(fù)習第二章函數(shù)概念與基本初等函數(shù)Ⅰ2.8函數(shù)與方程學案理_第1頁
課標通用2018年高考數(shù)學一輪復(fù)習第二章函數(shù)概念與基本初等函數(shù)Ⅰ2.8函數(shù)與方程學案理_第2頁
課標通用2018年高考數(shù)學一輪復(fù)習第二章函數(shù)概念與基本初等函數(shù)Ⅰ2.8函數(shù)與方程學案理_第3頁
課標通用2018年高考數(shù)學一輪復(fù)習第二章函數(shù)概念與基本初等函數(shù)Ⅰ2.8函數(shù)與方程學案理_第4頁
課標通用2018年高考數(shù)學一輪復(fù)習第二章函數(shù)概念與基本初等函數(shù)Ⅰ2.8函數(shù)與方程學案理_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2.8函數(shù)與方程考綱展示1.結(jié)合二次函數(shù)的圖象,了解函數(shù)的零點與方程根的聯(lián)系,判斷一元二次方程根的存在性及根的個數(shù)2根據(jù)具體函數(shù)的圖象,能夠用二分法求相應(yīng)方程的近似解考點1函數(shù)零點所在區(qū)間的判定1.函數(shù)零點的定義對于函數(shù)yf(x),把使_成立的實數(shù)x叫做函數(shù)yf(x)的零點答案:f(x)02幾個等價關(guān)系方程f(x)0有實數(shù)根函數(shù)yf(x)的圖象與_有交點函數(shù)yf(x)有_答案:x軸零點3函數(shù)零點的判定(零點存在性定理)如果函數(shù)yf(x)在區(qū)間a,b上的圖象是連續(xù)不斷的一條曲線,并且有_,那么函數(shù)yf(x)在區(qū)間_上有零點,即存在c(a,b),使得_,這個_也就是方程f(x)0的根答案:f(a)

2、f(b)0(a,b)f(c)0c4二分法的定義對于在區(qū)間a,b上連續(xù)不斷且_的函數(shù)yf(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間_,使區(qū)間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法答案:f(a)f(b)0一分為二函數(shù)零點理解的誤區(qū):零點的概念;零點的個數(shù)(1)函數(shù)的零點就是函數(shù)的圖象與x軸的_答案:(1)交點的橫坐標解析:函數(shù)的零點不是函數(shù)圖象與x軸的交點,而是圖象與x軸交點的橫坐標,也就是說函數(shù)的零點不是一個點,而是一個實數(shù)(2)若圖象連續(xù)不斷的函數(shù)yf(x)在區(qū)間(a,b)上單調(diào)且f(a)f(b)0,則函數(shù)yf(x)在區(qū)間(a,b)上有_零點答案:唯一解析:根據(jù)零點存

3、在性定理可知,函數(shù)yf(x)在區(qū)間(a,b)上存在零點,再根據(jù)單調(diào)性可得零點唯一二次函數(shù)的零點(1)二次函數(shù)f(x)ax2bxc(a0)存在一個正零點、一個負零點的充要條件是_答案:ac0解析:數(shù)形結(jié)合知,二次函數(shù)f(x)ax2bxc(a0)存在一個正零點、一個負零點的充要條件是af(0)0,即ac0.(2)函數(shù)y(k8)x2x1至多有一個零點,則k的取值范圍為_答案:解析:函數(shù)至多有一個零點,則:當k8時,令x10,即x1,有一個零點,符合題意;當k8時,令14(k8)0,解得k.故k的取值范圍為.典題1(1)2017湖北四地七校聯(lián)盟高三聯(lián)考函數(shù)f(x)xlog2x的零點所在區(qū)間為()A.B

4、C.D答案A解析flog220,即ff0,因此在上至少有一個零點故選A.(2)2017浙江溫州模擬如圖是二次函數(shù)f(x)x2bxa的部分圖象,則函數(shù)g(x)exf(x)的零點所在的大致區(qū)間是()A(1,0)B(0,1)C(1,2)D(2,3)答案B解析由圖象知1,得1b2,f(x)2xb,所以g(x)exf(x)ex2xb,則g(1)2b0,g(0)1b0,所以g(0)g(1)0.故選B.(3)2017浙江嘉興模擬設(shè)函數(shù)yx3與yx2的圖象的交點為(x0,y0)若x0(n,n1),nN,則x0所在的區(qū)間是_答案(1,2)解析設(shè)f(x)x3x2,則x0是函數(shù)f(x)的零點,在同一坐標系下畫出函數(shù)

5、yx3與yx2的圖象如圖所示因為f(1)1110,所以f(1)f(2)0,所以x0(1,2)點石成金確定函數(shù)f(x)的零點所在區(qū)間的兩種常用方法(1)定義法:使用零點存在性定理,函數(shù)yf(x)必須在區(qū)間a,b上是連續(xù)的,當f(a)f(b)0時,函數(shù)在區(qū)間(a,b)上至少有一個零點(2)圖象法:若一個函數(shù)(或方程)由兩個初等函數(shù)的和(或差)構(gòu)成,則可考慮用圖象法求解,如f(x)g(x)h(x),作出yg(x)和yh(x)的圖象,其交點的橫坐標即為函數(shù)f(x)的零點考點2判斷函數(shù)零點個數(shù)(1)教材習題改編函數(shù)f(x)ex3x的零點個數(shù)是()A0B1C2D3答案:B(2)教材習題改編用“二分法”求方

6、程x32x50在區(qū)間2,3內(nèi)的實根,取區(qū)間中點為x02.5,那么下一個有根的區(qū)間是_答案:2,2.5函數(shù)零點個數(shù)的判斷方法:直接求零點;零點存在性定理;圖象交點個數(shù)(1)若函數(shù)f(x)axb的一個零點是2,則函數(shù)g(x)bx2ax的零點是_答案:0,解析:因為2ab0,所以g(x)2ax2axax(2x1),所以零點為0和.(2)給出三個區(qū)間,則函數(shù)f(x)xln x的零點所在的一個區(qū)間是_答案:解析:當x從1趨近于0時,ln x趨近于負無窮大,所以f(x)趨近于負無窮大,而fln10,fln20,f(1)1ln 10,所以函數(shù)的零點所在區(qū)間是.典題2(1)2017安徽合肥模擬若偶函數(shù)f(x)

7、滿足f(x1)f(x1),且在x0,1時,f(x)x2,則關(guān)于x的方程f(x)x在上的根的個數(shù)是()A1B2C3D4答案C解析因為f(x)為偶函數(shù),所以當x1,0時,x0,1,所以f(x)x2,即f(x)x2.又f(x1)f(x1),所以f(x2)f(x1)1f(x1)1f(x),故f(x)是以2為周期的周期函數(shù),在同一坐標系中作出函數(shù)yf(x)與yx在上的圖象,如圖所示數(shù)形結(jié)合得兩圖象有3個交點,故方程f(x)x在上有3個根故選C.(2)2017湖南衡陽模擬函數(shù)f(x)的定義域為1,1,圖象如圖所示;函數(shù)g(x)的定義域為2,2,圖象如圖所示,方程f(g(x)0有m個實數(shù)根,方程g(f(x)

8、0有n個實數(shù)根,則mn()A14B12 C10D8答案A解析由題圖可知,若f(g(x)0,則g(x)1或g(x)0或g(x)1,由題圖可知,g(x)1時,x1或x1;g(x)0對應(yīng)的x值有3個;g(x)1時,x2或x2,故m7.若g(f(x)0,則f(x)1.5或f(x)1.5或f(x)0,由題圖知,f(x)1.5與f(x)1.5對應(yīng)的x值各有2個,f(x)0時,x1或x1或x0,故n7,故mn14.故選A.點石成金判斷函數(shù)零點個數(shù)的三種方法(1)解方程法:若對應(yīng)方程f(x)0可解時,通過解方程,則有幾個解就有幾個零點(2)零點存在性定理法:利用定理不僅要判斷函數(shù)在區(qū)間a,b上是連續(xù)不斷的曲線

9、,且f(a)f(b)1時有交點,即函數(shù)g(x)f(x)xm有零點的實數(shù)m的取值范圍是(,0(1,)考點4二次函數(shù)的零點問題二次函數(shù)yax2bxc(a0)的圖象與零點的關(guān)系000圖象與x軸的交點_無交點零點個數(shù)_答案:(x1,0),(x2,0)(x1,0)210典題4已知函數(shù)f(x)x2ax2,aR.(1)若不等式f(x)0的解集為1,2,求不等式f(x)1x2的解集;(2)若函數(shù)g(x)f(x)x21在區(qū)間(1,2)上有兩個不同的零點,求實數(shù)a的取值范圍解(1)因為不等式f(x)0的解集為1,2,所以a3,于是f(x)x23x2.由f(x)1x2,得2x23x10,解得x或x1,所以不等式f(

10、x)1x2的解集為.(2)函數(shù)g(x)2x2ax3在區(qū)間(1,2)上有兩個不同的零點,則即解得5a2.所以實數(shù)a的取值范圍是(5,2)點石成金解決與二次函數(shù)有關(guān)的零點問題(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判別式及根與系數(shù)之間的關(guān)系;(3)利用二次函數(shù)的圖象列不等式組.已知f(x)x2(a21)x(a2)的一個零點比1大,一個零點比1小,求實數(shù)a的取值范圍解:解法一:設(shè)方程x2(a21)x(a2)0的兩根分別為x1,x2(x1x2),則(x11)(x21)0,x1x2(x1x2)10,由根與系數(shù)的關(guān)系,得(a2)(a21)10,即a2a20,2a1.故實數(shù)a的取值范圍為

11、(2,1)解法二:函數(shù)圖象大致如圖,則有f(1)0,即1(a21)a20,得a2a20,2a1.故實數(shù)a的取值范圍是(2,1)方法技巧1.判定函數(shù)零點的常用方法有:(1)零點存在性定理;(2)數(shù)形結(jié)合;(3)解方程f(x)0.2研究方程f(x)g(x)的解,實質(zhì)就是研究G(x)f(x)g(x)的零點3若函數(shù)f(x)在a,b上單調(diào),且f(x)的圖象是連續(xù)不斷的一條曲線,則f(a)f(b)0函數(shù)f(x)在a,b上只有一個零點4轉(zhuǎn)化思想:方程解的個數(shù)問題可轉(zhuǎn)化為兩個函數(shù)圖象交點的個數(shù)問題;已知方程有解求參數(shù)范圍問題可轉(zhuǎn)化為函數(shù)值域問題易錯防范1.函數(shù)的零點不是點,是方程f(x)0的實根2函數(shù)零點的存

12、在性定理只能判斷函數(shù)在某個區(qū)間上的變號零點,而不能判斷函數(shù)的不變號零點,而且連續(xù)函數(shù)在一個區(qū)間的端點處函數(shù)值異號是這個函數(shù)在這個區(qū)間上存在零點的充分不必要條件. 真題演練集訓(xùn) 12015山東卷設(shè)函數(shù)f(x)則滿足f(f(a)2f(a)的a的取值范圍是()A.B0,1C.D1,)答案:C解析:由f(f(a)2f(a)得,f(a)1.當a1時,有3a11, a,即a2時,g(x)xb4,f(x)(x2)2;當0x2時,g(x)bx,f(x)2x;當x2時,方程f(x)g(x)0可化為x25x80,無解;當0x2時,方程f(x)g(x)0可化為2x(x)0,無解;當x2時,方程f(x)g(x)0可化

13、為(x2)2x2,得x2(舍去)或x3,有1解;當0x2時,方程f(x)g(x)0可化為2x2x,有無數(shù)個解;當x2時,方程f(x)g(x)0可化為x25x70,無解;當0x2時,方程f(x)g(x)0可化為1x2x,無解;當x0時,方程f(x)g(x)0可化為x2x10,無解所以b1,排除答案C.故選D.32014湖南卷已知函數(shù)f(x)x2ex(x0時,yf(x)與yg(x)的圖象有交點,即g(x)f(x)有正解,即x2ln(xa)(x)2ex有正解,即exln(xa)0有正解,令F(x)exln(xa),則F(x)ex0,故函數(shù)F(x)exln(xa)在(0,)上是單調(diào)遞減的,要使方程g(

14、x)f(x)有正解,則存在正數(shù)x使得F(x)0,即exln(xa)0,所以aex,又yex在(0,)上單調(diào)遞減,所以am時,f(x)x22mx4m(xm)2 4mm2,其頂點為(m,4mm2);當xm時,函數(shù)f(x)的圖象與直線xm的交點為Q(m,m)當即03時,函數(shù)f(x)的圖象如圖所示,則存在實數(shù)b滿足4mm2bm,使得直線yb與函數(shù)f(x)的圖象有三個不同的交點,符合題意綜上,m的取值范圍為(3,)52015湖南卷已知函數(shù)f(x)若存在實數(shù)b,使函數(shù)g(x)f(x)b有兩個零點,則a的取值范圍是_答案:(,0)(1,)解析:函數(shù)g(x)有兩個零點,即方程f(x)b0有兩個不等實根,則函數(shù)

15、yf(x)和yb的圖象有兩個公共點若a0),其中e表示自然對數(shù)的底數(shù)(1)若g(x)m有實根,求實數(shù)m的取值范圍;(2)確定t的取值范圍,使得g(x)f(x)0有兩個相異實根思路分析(1)可將g(x)m有實根轉(zhuǎn)化為一元二次方程有大于零的實根來求解,也可利用基本不等式或根據(jù)函數(shù)圖象求解;(2)利用函數(shù)圖象得到不等式,解不等式即可解(1)解法一:因為x0,所以g(x)x22e,等號成立的條件是xe.故g(x)的值域是2e,),因而只需m2e,g(x)m就有實根故實數(shù)m的取值范圍為2e,)解法二:作出g(x)x(x0)的圖象,如圖所示觀察圖象可知g(x)的最小值為2e,因此要使g(x)m有實根,則只

16、需m2e.故實數(shù)m的取值范圍為2e,)解法三:由g(x)m,得x2mxe20,故等價于故m2e.故實數(shù)m的取值范圍為2e,)(2)若g(x)f(x)0有兩個相異的實根,則函數(shù)g(x)與f(x)的圖象有兩個不同的交點因為f(x)x22ext1(xe)2t1e2,所以函數(shù)f(x)圖象的對稱軸為直線xe,開口向下,最大值為t1e2.由題意,作出g(x)x(x0)及f(x)x22ext1的大致圖象,如圖所示故當t1e22e,即te22e1時,g(x)與f(x)的圖象有兩個交點,即g(x)f(x)0有兩個相異實根所以t的取值范圍是(e22e1,)典例2設(shè)函數(shù)f(x)ax33ax,g(x)bx2ln x(a,bR),已知它們的圖象在x1處的切線的斜率相等(1)求b的值;(2)若函數(shù)F(x)且方程F(x)a2有且僅有四個解,求實數(shù)a的取值范圍思路分析解(1)f(x)3ax23a,所以f(1)0.而g(x)2bx,故g(1)2b1,由題意得2b10,解得b.(2)當x(0,1)時,g(x)x0,所以當x1時,g(x)取得極小值g(1).當a0時,易知方程F(x)a2不可能只有四個解當a0時,x(,1)時,f(x)0,所以當x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論