人教版九年級數學上冊第二十二章二次函數知識點總結_第1頁
人教版九年級數學上冊第二十二章二次函數知識點總結_第2頁
人教版九年級數學上冊第二十二章二次函數知識點總結_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、第二十二章 二次函數一、二次函數的有關概念:1、二次函數的定義:一般地,形如(是常數,)的函數,叫做二次函數。 2、二次函數解析式的表示方法(1) 一般式:(,為常數,);(2) 頂點式:(,為常數,);(3)兩根式:(,是拋物線與軸兩交點的橫坐標).二、二次函數圖象的畫法1.基本方法:描點法注:五點繪圖法。利用配方法將二次函數化為頂點式,確定其開口方向、對稱軸及頂點坐標,然后在對稱軸兩側,左右對稱地描點畫圖.一般我們選取的五點為:頂點、與軸的交點、以及關于對稱軸對稱的點、與軸的交點,(若與軸沒有交點,則取兩組關于對稱軸對稱的點).2.畫草圖 抓住以下幾點:開口方向,對稱軸,頂點,與軸的交點,

2、與軸的交點.三、二次函數的圖像和性質1.二次函數的性質(1). 當時,拋物線開口向上,對稱軸為,頂點坐標為當時,隨的增大而減??;當時,隨的增大而增大;當時,有最小值(2). 當時,拋物線開口向下,對稱軸為,頂點坐標為當時,隨的增大而增大;當時,隨的增大而減?。划敃r,有最大值2.二次函數 的性質:的符號開口方向頂點坐標對稱軸性質向上x=h時,隨的增大而增大;時,隨的增大而減??;時,有最小值向下x=h時,隨的增大而減??;時,隨的增大而增大;時,有最大值四、二次函數圖象的平移概括成八個字“左加右減,上加下減”五、二次函數與一元二次方程:一元二次方程是二次函數當函數值時的特殊情況.圖象與軸的交點個數:

3、 當時,圖象與軸交于兩點,其中的是一元二次方程的兩根這兩點間的距離. 當時,圖象與軸只有一個交點; 當時,圖象與軸沒有交點. 當時,圖象落在軸的上方,無論為任何實數,都有; 當時,圖象落在軸的下方,無論為任何實數,都有 六、二次函數中的符號問題 1. 二次項系數決定了拋物線開口大小和方向,的正負決定開口方向,的大小決定開口的大小2. 一次項系數 在二次項系數確定的前提下,決定了拋物線的對稱軸 在的前提下,當時,即拋物線的對稱軸在軸左側;當時,即拋物線的對稱軸就是軸;當時,即拋物線對稱軸在軸的右側 在的前提下,結論剛好與上述相反,即當時,即拋物線的對稱軸在軸右側;當時,即拋物線的對稱軸就是軸;當

4、時,即拋物線對稱軸在軸的左側總結起來,在確定的前提下,決定了拋物線對稱軸的位置總結:“左同右異” 3. 常數項 當時,拋物線與軸的交點在軸上方,即拋物線與軸交點的縱坐標為正; 當時,拋物線與軸的交點為坐標原點,即拋物線與軸交點的縱坐標為; 當時,拋物線與軸的交點在軸下方,即拋物線與軸交點的縱坐標為負 總結起來,決定了拋物線與軸交點的位置七、二次函數解析式的確定:根據已知條件確定二次函數解析式,通常利用待定系數法用待定系數法求二次函數的解析式必須根據題目的特點,選擇適當的形式,才能使解題簡便一般來說,有如下幾種情況:1. 已知拋物線上三點的坐標,一般選用一般式;2. 已知拋物線頂點或對稱軸或最大(小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論