【2014閘北二?!可虾J虚l北區(qū)2014屆高三下學(xué)期二??荚嚁?shù)學(xué)(文)試題Word版含答案_第1頁
【2014閘北二?!可虾J虚l北區(qū)2014屆高三下學(xué)期二??荚嚁?shù)學(xué)(文)試題Word版含答案_第2頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、閘北區(qū)高考數(shù)學(xué)(文科)二模卷一、填空題(54分)本大題共有9題,每個空格填對得6分,否則一律得零分ai1. 設(shè)aR,i是虛數(shù)單位.若復(fù)數(shù)是純虛數(shù),則a二.3+i42. 不等式>X的解集為.x3. 若2是log2a與log2b的等差中項,則a+b的最小值為.X0,I4. 設(shè)變量x,y滿足<x-y0,則z=3x_2y的最大值為.2x-2,0,5. 若軸截面是正方形的圓柱的上、下底面圓周均位于一個球面上,且球與圓柱的體積分別為y和v,則V:V2的值為.6. 設(shè)x運r,向量a=(x,i),b=(i,2),且a丄b,則心+"=.7. 如圖,ABCD是邊長為60cm的正方形硬紙片,切

2、去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,得A、B、C、D四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上,是被切去的一個等腰直角三角形斜邊的兩個端點.設(shè)AE=FB=xcm.若要使包裝盒的側(cè)面積最大,則x的值為8. 設(shè)a0,a.二nan,若tan'是單調(diào)遞減數(shù)列,則實數(shù)a的取值范圍為.9. 已知集合A=x,y)|y=|x+m>,B=兩個元素,則實數(shù)m的取值范圍是.、選擇題(18分)本大題共有3題,每題選對得6分,否則一律得零分10.袋中共有6個除了顏色外完全相同的球,其中有1個紅球,2個白球和3個黑球,從袋中任取兩球,兩球顏色不同的概率等于8

3、3A.B.15511.函數(shù)f(x)二Msin,x(u>0),在區(qū)間貝U函數(shù)f(x)二Mc()A.是增函數(shù)B.C.可以取得最大值MC.D.12.現(xiàn)有某種細胞100個,其中有占約總數(shù)2個細胞,按這種規(guī)律發(fā)展下去,經(jīng)過11D.153a,b1上是增函數(shù),且xo在區(qū)f(a)-M,f(b)=Ma,b】上是減函數(shù)可以取得最小值M11的細胞每小時分裂一次,即由210小時,細胞總數(shù)大約為1個細胞分裂成A. 3844個B. 5766個C. 8650個D. 9998個三、解答題(78分)本大題共有4題,請在答題紙內(nèi)寫出必要的步驟13. 本題滿分18分,第1小題滿分9分,第2小題滿分9分如右圖,在正三棱柱ABC

4、-AB.G中,AA,二A.B,=4,D、E分別為AA與A1B1的中點.求異面直線GD與BE的夾角;(2)求四面體BDEC!體積14. 本題滿分18分,第1小題滿分8分,第2小題滿分10分3_2x設(shè)函數(shù)f(X)=7(XR).3+2X(1) 求函數(shù)y=f(x)的值域和零點;(2) 請判斷函數(shù)y二f(x)的奇偶性和單調(diào)性,并給予證明.15. 本題滿分20分,第1小題滿分10分,第2小題滿分10分設(shè)a是正數(shù)組成的數(shù)列,其前n項和為Sn,并且對任意的nN”,an與2的等差中項等于Sn與2的等比中項.(1) 求證:數(shù)列an的通項公式為an=4n-2;(2) 已知數(shù)列b是以2為首項,公比為3的等比數(shù)列,其第

5、n項恰好是數(shù)列匕的第r項,求lim丄的值.Y3n16. 本題滿分22分,第1小題滿分6分,第2小題滿分16分1已知反比例函數(shù)y的圖像C是以x軸與y軸為漸近線的等軸雙曲線.x(1) 求雙曲線C的頂點坐標(biāo)與焦點坐標(biāo);(2) 設(shè)直線I過點P(0,4),且與雙曲線C交于A、B兩點,與x軸交于點Q. 求A、B中點M的軌跡方程; 當(dāng)PQ=QA2QB,且1'2工8時,求點Q的坐標(biāo)2014年閘北區(qū)高考數(shù)學(xué)(文科)二模卷一、填空題11. 【解析】32由題意得a-i_(a-i)(3-i)_3a-ai-3i+i_(3a-1)-(a+3)i_3a-1a+3i又心心寸3+i一(3+i)(3i)一10一10-10

6、10,3a11復(fù)數(shù)為純虛數(shù),所以江=0,所以a二丄1034x2+42. (0,2)【解析】當(dāng)x0時,x0,顯然x:0時不成立,當(dāng)x0時,xx4x4x0,即0x2,所以不等式的解集為(0,2).xx43.8【解析】由題得log2alog2b=22,所以log2ab=4,ab=2,又a0,b0,所以ab2ab=8,所以ab的最小值為8.x04.3【解析】如圖為不等式組x-y0表示的區(qū)域,如圖所示,當(dāng)其過點A(1,0)時z、2xy2,0取得最大值zmax=31-20=3.5.加【解析】因為圓柱截面為正方形,則圓柱高與底面直徑長相等,設(shè)為2R,又上下底圓周均在同一球面上,則球面半徑為(2R)2(2R)

7、2=.2R.所以4如4血Vm廠=3遼.Vi所以x-2=0一x=2,得a=(2,1),b=(1,-2).a+b=J(2+1)2+(1_2)2=710.7.15【解析】由題意,YAB=FB=xcm,則EF=(60-2x)cm,又陰影部分為等腰直角三角形,.包裝盒側(cè)面高為2(60-2x)cm=(302-、2x)cm,由勾股定理,長為2xcm.則側(cè)面積為2S側(cè)=4(302-2x)'、2x=-8x2+240x=-8(x15)2+1800,所以當(dāng)x=15cm時,包裝盒的側(cè)面積最大,最大面積為1800cm2.18.(0,孑【解析】弄是單an二nan=an(n1)an1/丄丄nn=an1an=(n1)

8、a-na,由于遞減數(shù)所以(n,1)an1n-na:0,1-n+11-.所以a的取值29.(-1,0)【解析】當(dāng)m0,A中集合中所有元素為正,B過(0,0)點,至多有個交點.當(dāng)m=0n1aaa1范圍是(0,).2只有一個交點,所以m”:0,如圖,可知只有y=mx斜率大于T時有兩個交點,所以m(-1,0).二、選擇題22210.D【解析】由題意知總共的抽法有C6,任取兩個球,其顏色相同的取法有C2C-,所以任取兩球顏色不同的取法有C;-c;種,所以任取兩球顏色不同的概率15Cf11.C【解析】因為函數(shù)在給定區(qū)間內(nèi)是增函數(shù),且fx二Msinx在a,b處分別取得最小nn值和最大值,則知Ma0,且a=+

9、2kn,尬b=+2kn,由正弦函數(shù)與余弦函數(shù)圖像22的關(guān)系,知fx=Mcosx在此區(qū)間內(nèi)先增后減,二fx=Msinx在區(qū)間a,b上可以取得最大值M故選C.12.B【解析】由題意知細胞每次分裂之后都有一半的細胞在下一次具備分裂的能力,設(shè)n=100,經(jīng)過一個小時有細胞數(shù)為-2=-n,經(jīng)過兩個小時有細胞數(shù)為22231319nnn2=22224zJ0n,以此規(guī)律即可得經(jīng)過十小時細胞總數(shù)為-n,把n=100代入關(guān)系式得細胞總數(shù)約為5766.三、解答題13.本題滿分18分,第1小題滿分【解】(1)過點D作DF/BE交AB于點F,連結(jié)FC1,C1DF即所求異面直線所成角(或補角)2分解得DC.20DF=.2

10、212=,5,9分,第2小題滿分9分1分FC=JaC2+AF22ACAFCOS60"=$42十12_2F1冷=713,又CG=4,FC1FC2CC;-.29,由余弦定理,有cosC1DF二DC;DF?-FC;2DC1DF所以,異面直線C1D與BE的夾角為二5.1arccos.5故y=f(x)在定義域R上是減函數(shù)2分1_(2)DE=一2222=2、2,BD=.20,BDE的高為3.2,Sabde二2.23.2=6,2BDE的面積為6,2分AB,G為等邊三角形,E為AB1中點,GE=42-22=2'、3,高為GE=2.3,3分1廠一四面體BDEC1體積V6243.38分,第2小題

11、滿分10分4分14.本題滿分18分,第1小題滿分32【解】(1)f(x)=Lx3+2x2x0,二3+2x>3=-132110<<=3+2x36x,60<x<2,32x-1,1;-1:f(x):1,故y=f(x)的值域為令f(x)=0,即一-=1,解得x二log23,3+2xy=f(x)的零點為x=log23.對任意的xR,3-2,5.1f(-1)13+275故y二f(x)是非奇非偶函數(shù)所以,對任意的x-i,xR,af(Xjf(X2)飛一xxx-32x32X(32X1)(32X2)因為32X10,32X20,2X2-2為0,所以f(xjf(x2).二-f(1),6(

12、2卷2X1)15.本題滿分20分,第1小題滿分10分,第2小題滿分10分a+21【解】(1)證法一:由題意二2sn,an.0,得S-(an2)22、812當(dāng)n=1時,a(a12),得a2;2分812當(dāng)n2時,Sn-(an,12)2.81所以,an1=Sn1-Sn爲(wèi)(an2)2_(an2)2.8整理,得(an1-an)(an1-an-4)=0.4分由題意知an1an=0,所以an1-an二4.2分所以數(shù)列fan,為首項為2,公差為4的等差數(shù)列,即an二4n-2.2分證法二:用數(shù)學(xué)歸納法:1當(dāng)n=1時,a2符合題意;2分2假設(shè)n=k(kN*)時,結(jié)論成立,即ak=4k-2.1分由題意有魚22Sk,

13、2%k將ak=4k-2代入上式,得2k=.,2Sk,解得Sk=2k2.ak卅+2丫,2-4ak彳4-16k2=0.由題意有ak;2壬'2Sk彳,即2k1>0,解得:ak卅=4k+2=4(k+1)2.(kN)=2ak12k2.整理,得a由于ak1綜上所述,對所有的nN*,an=4n-2.(2)由題意,23n°=4r-2,解得r3n+431,T3n-1,6分3nJ1limlimnnTn'2(3n-1)4分16.本題滿分22分,第1小題滿分6分,第2小題滿分16分【解】(1)由題意得:頂點:幾(-1,-1)、A2(1,1),2分焦點:片(一、2,-、.2)、F222)為焦點.4分(2)直線l斜率不存在或為0時顯然不滿足條件;設(shè)直線l:y=kx4(kz0),A(x1,yj,B(X2,y2),M(x,y),1分12將y=kx4代入y,得kx24x-1=0,1分:=164k0,k>-4,x1x2L-4k,X11x2_k,x1x22y1y2x-y2,2k21分1分1分21k-4:匚,0,*所以,).A、B中點M的軌跡方程為y=2(x三二,0J1,12丿直線I斜率不存在或為0時顯然不滿足條件;設(shè)直線I:y=kx4(kz0),B(X2,y2),則Q(-4,0)k12將y=kx4代入y,得kx4x-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論