2022屆浙江省杭州市杭州高三最后一卷數(shù)學試卷含解析_第1頁
2022屆浙江省杭州市杭州高三最后一卷數(shù)學試卷含解析_第2頁
2022屆浙江省杭州市杭州高三最后一卷數(shù)學試卷含解析_第3頁
2022屆浙江省杭州市杭州高三最后一卷數(shù)學試卷含解析_第4頁
2022屆浙江省杭州市杭州高三最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知公差不為0的等差數(shù)列的前項的和為,且成等比數(shù)列,則( )A56B72C88D402 “”是“”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件3函數(shù)在上的大

2、致圖象是( )ABCD4由曲線yx2與曲線y2x所圍成的平面圖形的面積為()A1BCD5要排出高三某班一天中,語文、數(shù)學、英語各節(jié),自習課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語文課必須相鄰且節(jié)數(shù)學課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是( )ABCD6洛書,古稱龜書,是陰陽五行術數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結構是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點為陰數(shù)如圖,若從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),則其和等于11的概率是( )ABCD7如圖,設為內一點,且,則與的面積之比為ABCD8從集合

3、中隨機選取一個數(shù)記為,從集合中隨機選取一個數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點在軸上的雙曲線的概率為( )ABCD9已知三棱柱( )ABCD10過拋物線()的焦點且傾斜角為的直線交拋物線于兩點.,且在第一象限,則( )ABCD11已知向量,且與的夾角為,則x=( )A-2B2C1D-112點在曲線上,過作軸垂線,設與曲線交于點,且點的縱坐標始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數(shù)為( )A0B1C2D3二、填空題:本題共4小題,每小題5分,共20分。13一個袋中裝著標有數(shù)字1,2,3,4,5的小球各2個,從中任意摸取3個小球,每個小球被取出的可能性相

4、等,則取出的3個小球中數(shù)字最大的為4的概率是_14已知數(shù)列滿足,則_15某市公租房源位于、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,則該市的任意位申請人中,恰好有人申請小區(qū)房源的概率是_ .(用數(shù)字作答)16某種圓柱形的如罐的容積為個立方單位,當它的底面半徑和高的比值為_.時,可使得所用材料最省.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù).()當時,求不等式的解集;()若存在滿足不等式,求實數(shù)的取值范圍.18(12分)為了拓展城市的旅游業(yè),實現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達公路,中間設有

5、至少8個的偶數(shù)個十字路口,記為,現(xiàn)規(guī)劃在每個路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現(xiàn)征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認為喜歡樹木的種類與居民所在的城市具有相關性;(2)若從所有的路口中隨機抽取4個路口,恰有個路口種植楊樹,求的分布列以及數(shù)學期望;(3)在所有的路口種植完成后,選取3個種植同一種樹的路口,記總的選取方法數(shù)為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82819(12分)在中,角的對邊分別為,若.(1)求角的

6、大??;(2)若,為外一點,求四邊形面積的最大值.20(12分)已知曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為(1)寫出曲線的極坐標方程;(2)點是曲線上的一點,試判斷點與曲線的位置關系21(12分)為了響應國家號召,促進垃圾分類,某校組織了高三年級學生參與了“垃圾分類,從我做起”的知識問卷作答隨機抽出男女各20名同學的問卷進行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.()由以上數(shù)據(jù)繪制成22聯(lián)表,是否有95%以上的把握認為“性別”與“問卷結果”有關?男女總計合格不合格總計()從上述樣本中,成績在60分以下(不含60分)的男女學生

7、問卷中任意選2個,記來自男生的個數(shù)為,求的分布列及數(shù)學期望.附:0.1000.0500.0100.0012.7063.8416.63510.828 22(10分)在中,角,所對的邊分別為,已知,角為銳角,的面積為.(1)求角的大?。唬?)求的值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】,將代入,求得公差d,再利用等差數(shù)列的前n項和公式計算即可.【詳解】由已知,故,解得或(舍),故,.故選:B.【點睛】本題考查等差數(shù)列的前n項和公式,考查等差數(shù)列基本量的計算,是一道容易題.2B【解析】或,從而明確充分性與必要性.【

8、詳解】,由可得:或,即能推出,但推不出“”是“”的必要不充分條件故選【點睛】本題考查充分性與必要性,簡單三角方程的解法,屬于基礎題.3D【解析】討論的取值范圍,然后對函數(shù)進行求導,利用導數(shù)的幾何意義即可判斷.【詳解】當時,則,所以函數(shù)在上單調遞增,令,則,根據(jù)三角函數(shù)的性質,當時,故切線的斜率變小,當時,故切線的斜率變大,可排除A、B;當時,則,所以函數(shù)在上單調遞增,令 ,當時,故切線的斜率變大,當時,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數(shù)的圖像,考查了導數(shù)與函數(shù)單調性的關系以及導數(shù)的幾何意義,屬于中檔題.4B【解析】首先求得兩曲線的交點坐標,據(jù)此可確定積分區(qū)間,然后利

9、用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,結合定積分的幾何意義可知曲線yx2與曲線y2x所圍成的平面圖形的面積為:.本題選擇B選項.【點睛】本題主要考查定積分的概念與計算,屬于中等題.5C【解析】根據(jù)題意,分兩種情況進行討論:語文和數(shù)學都安排在上午;語文和數(shù)學一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計數(shù)原理可得答案【詳解】根據(jù)題意,分兩種情況進行討論:語文和數(shù)學都安排在上午,要求節(jié)語文課必須相鄰且節(jié)數(shù)學課也必須相鄰,將節(jié)語文課和節(jié)數(shù)學課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語課不加以區(qū)分,此時,排法種數(shù)為種;語文和數(shù)學都一個安排在上

10、午,一個安排在下午.語文和數(shù)學一個安排在上午,一個安排在下午,但節(jié)語文課不加以區(qū)分,節(jié)數(shù)學課不加以區(qū)分,節(jié)英語課也不加以區(qū)分,此時,排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C【點睛】本題考查排列、組合的應用,涉及分類計數(shù)原理的應用,屬于中等題6A【解析】基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率【詳解】解:從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,共4個,其和等于的概率故選:【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,屬于基礎題7A【解析】作交于點,根據(jù)向量比例,利用

11、三角形面積公式,得出與的比例,再由與的比例,可得到結果.【詳解】如圖,作交于點,則,由題意,且,所以又,所以,即,所以本題答案為A.【點睛】本題考查三角函數(shù)與向量的結合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關鍵.8A【解析】設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,分別計算出,再利用公式計算即可.【詳解】設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,由題意,則所求的概率為.故選:A.【點睛】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.9C【解析】因為直三棱柱中,AB3,AC4,AA112,ABAC,所以

12、BC5,且BC為過底面ABC的截面圓的直徑取BC中點D,則OD底面ABC,則O在側面BCC1B1內,矩形BCC1B1的對角線長即為球直徑,所以2R13,即R10C【解析】作,;,由題意,由二倍角公式即得解.【詳解】由題意,準線:,作,;,設,故,.故選:C【點睛】本題考查了拋物線的性質綜合,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.11B【解析】由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點睛】本題考查了利用向量的數(shù)量積求向量的夾角,屬于基礎題.12C【解析】設,則,則,即可得,設,利用導函數(shù)判斷的零點的個數(shù),即為所求.【詳解】設,則,所以,依題意可

13、得,設,則,當時,則單調遞減;當時,則單調遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數(shù)為2.故選:C【點睛】本題考查利用導函數(shù)處理零點問題,考查向量的坐標運算,考查零點存在性定理的應用.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由題,得滿足題目要求的情況有,有一個數(shù)字4,另外兩個數(shù)字從1,2,3里面選和有兩個數(shù)字4,另外一個數(shù)字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類:有一個數(shù)字4,另外兩個數(shù)字從1,2,3里面選,一共有種情況;有兩個數(shù)字4,另外一個數(shù)字從1,2,3里面選,一共有種情況,又從中任意摸取3個小球,有種

14、情況,所以取出的3個小球中數(shù)字最大的為4的概率.故答案為:【點睛】本題主要考查古典概型與組合的綜合問題,考查學生分析問題和解決問題的能力.14【解析】項和轉化可得,討論是否滿足,分段表示即得解【詳解】當時,由已知,可得,故,由-得,顯然當時不滿足上式,故答案為:【點睛】本題考查了利用求,考查了學生綜合分析,轉化劃歸,數(shù)學運算,分類討論的能力,屬于中檔題.15【解析】基本事件總數(shù),恰好有2人申請小區(qū)房源包含的基本事件個數(shù),由此能求出該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率【詳解】解:某市公租房源位于、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的

15、,該市的任意5位申請人中,基本事件總數(shù),該市的任意5位申請人中,恰好有2人申請小區(qū)房源包含的基本事件個數(shù):,該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率是故答案為:【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,屬于中檔題16【解析】設圓柱的高為,底面半徑為,根據(jù)容積為個立方單位可得,再列出該圓柱的表面積,利用導數(shù)求出最值,從而進一步得到圓柱的底面半徑和高的比值【詳解】設圓柱的高為,底面半徑為.該圓柱形的如罐的容積為個立方單位,即.該圓柱形的表面積為.令,則.令,得;令,得.在上單調遞減,在上單調遞增.當時,取得最小值,即材料最省,此時.故答案為:.【點

16、睛】本題考查函數(shù)的應用,解答本題的關鍵是寫出表面積的表示式,再利用導數(shù)求函數(shù)的最值,屬中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17()或.()【解析】()分類討論解絕對值不等式得到答案.()討論和兩種情況,得到函數(shù)單調性,得到只需,代入計算得到答案.【詳解】()當時,不等式為,變形為或或,解集為或. ()當時,由此可知在單調遞減,在單調遞增, 當時,同樣得到在單調遞減,在單調遞增,所以,存在滿足不等式,只需,即,解得.【點睛】本題考查了解絕對值不等式,不等式存在性問題,意在考查學生的計算能力和綜合應用能力.18(1)沒有(2)分布列見解析,(3)證明見解析【解析】(

17、1)根據(jù)公式計算卡方值,再對應卡值表判斷.(2)根據(jù)題意,隨機變量的可能取值為0,1,2,3,4,分別求得概率,寫出分布列,根據(jù)期望公式求值.(3)因為至少8個的偶數(shù)個十字路口,所以,即.要證,即證,根據(jù)組合數(shù)公式,即證;易知有.成立.設個路口中有個路口種植楊樹,下面分類討論當時,由論證.當時,由論證.當時,設,再論證當 時,取得最小值即可.【詳解】(1)本次實驗中,故沒有99.9%的把握認為喜歡樹木的種類與居民所在的城市具有相關性.(2)依題意,的可能取值為0,1,2,3,4,故,01234故.(3),.要證,即證;首先證明:對任意,有.證明:因為,所以.設個路口中有個路口種植楊樹,當時,因

18、為,所以,于是.當時,同上可得當時,設,當時,顯然,當即時,當即時,即;,因此,即.綜上,即.【點睛】本題考查獨立性檢驗、離散型隨機變量的分布列以及期望、排列組合,還考查運算求解能力以及必然與或然思想,屬于難題.19(1)(2)【解析】(1)根據(jù)正弦定理化簡等式可得,即;(2)根據(jù)題意,利用余弦定理可得,再表示出,表示出四邊形,進而可得最值.【詳解】(1),由正弦定理得: 在中,則,即,即.(2)在中,又,則為等邊三角形,又,-當時,四邊形的面積取最大值,最大值為.【點睛】本題主要考查了正弦定理,余弦定理,三角形面積公式的應用,屬于基礎題20(1)(2)點在曲線外【解析】(1)先消參化曲線的參數(shù)方程為普通方程,再化為極坐標方程;(2)由點是曲線上的一點,利用的范圍判斷的范圍,即可判斷位置關系.【詳解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論