版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、10.1 The z-Transform10. The z-Transform 10.1 The z-TransformLTI (1) Definition10.1 The z-Transform10.1 The z-Transformz-planeUnit circle10.1 The z-Transforma. Especially, when z=ej, above equation becomes The Fourier transform of signal xn:So, the relationship between the Fourier transform and the z
2、-transform is:(2) The relationship between Z-transform and the Fourier transform of xnb. On the other hand, 10.1 The z-Transform(2) Region of Convergence ( ROC )ROC: Range of z for X(z) to converge Representation: A. Inequality B. Region in z-plane10.1 The z-TransformExample 10.1 Determine the z-Tra
3、nsform of xn and its ROC.10.1 The z-TransformSolution:10.1 The z-TransformFigure 10.2ReImUnit circleExample 10.2 Determine the z-Transform of xn and its ROC.10.1 The z-TransformSolution:10.1 The z-TransformFigure 10.310.1 The z-Transformandhave same Z- transform representation, but their ROC is diff
4、erent.ZZNote: for a signal xn, we must give out the z-transform with its ROC.10.1 The z-Transform(3) The pole-zero plot of X(z)X(z) can be represented the ratio of two polynomials the numerator polynomial;the denominator polynomial;10.1 The z-TransformDefinition:The zeros of X(z): the roots of the n
5、umerator polynomial N(z) is called the zeros of X(z). The poles of X(z): the roots of the denominator polynomial D(z) is called the poles of X(z).10.1 The z-TransformThe representation of X(z) through its poles and zeros in the z-plane is referred to the pole-zero plot of X(z).Definition:In the z-pl
6、ane, use “X” to indicate the poles of X(z); and use “O” to indicate the zeros of X(z); On the other hand, If MN, z, X(z) , X(z) have (M-N) poles at infinity. If Mr0 will also in the ROC. 10.2 The ROC of the z-TransformFigure 10.7 right-sided sequence xn.10.2 The ROC of the z-TransformaROC of a right
7、-sided sequence: Property 5: If xn is left-sided sequence, and if the circle |z|=r0 is in the ROC, then all values of z for which 0|z|r0 will also be in the ROC. 10.2 The ROC of the z-Transform10.2 The ROC of the z-TransformbReROC of left-sided sequence:Property 6: If xn is two sided, and if the cir
8、cle |z|=r0 is in the ROC, then the ROC will consist of a ring in the z-plane that includes the circle |z|=r0 . 10.2 The ROC of the z-Transform10.2 The ROC of the z-TransformabROC of two-sided sequence:Example 10.6 Determine the z-transform of the following signals.10.2 The ROC of the z-Transform10.2
9、 The ROC of the z-TransformSolution:Zeros of X(z):N-1 poles of X(z):pole of X(z):這個(gè)極點(diǎn)與k=0時(shí)的零點(diǎn)抵消了。10.2 The ROC of the z-TransformFigure 10-9Example 10.7Determine the z-transform of the following signals.10.2 The ROC of the z-Transform10.2 The ROC of the z-Transform0b1Property 7: If the z-transform X(
10、z) of xn is rational, then its ROC is bounded by poles or extends to infinity. 10.2 The ROC of the z-TransformProperty 8: If the z-transform X(z) of xn is rational, and if xn is right sided, then the ROC is the region in the z-plane outside the outmost pole i.e., outside the circle of radius equal t
11、o the largest magnitude of the poles of X(z), Furthermore, if xn is causal (i.e., if it is right sided and equal to 0 for n0) , then the ROC also includes z=0.10.2 The ROC of the z-TransformExample 10.8Consider all of the possible ROCS of X(z).Figure 10.1210.2 The ROC of the z-Transform 10.3 The Inv
12、erse z-Transform10.3 The inverse z-TransformShow:10.3 The inverse z-TransformThe calculation for inverse z-transform X(z):(1) Integration of complex function by equation.(2) using fraction expansion 10.3 The inverse z-Transform(3)Long division (Taylors series) 長除法(泰勒級(jí)數(shù)展開法) Appendix Partial Fraction
13、ExpansionConsider a fraction polynomial:10.3 The inverse z-Transform即,X(z)是z的有理分式。把X(z)表示成z-1的兩個(gè)多項(xiàng)式之比形式。10.3 The inverse z-TransformDiscuss two cases of D(z-1)=0, for distinct roots, and same roots.我們這里對(duì)X(z) 以z-1進(jìn)行部分分式展開。10.3 The inverse z-TransformCase 1: Distinct roots:thus10.3 The inverse z-Trans
14、formCalculate A1 :Generally10.3 The inverse z-TransformUsing the following relationships to obtain xn.10.3 The inverse z-Transform10.3 The inverse z-TransformExample : Compute the inverse z-transform of X(z).Solution:10.3 The inverse z-Transform10.3 The inverse z-TransformCase 2: Same root:So,10.3 T
15、he inverse z-TransformFor first order poles:10.3 The inverse z-TransformMultiply two sides by (1-p1z-1)r : For r-order poles:10.3 The inverse z-TransformSo 10.3 The inverse z-Transform10.3 The inverse z-TransformusingWe can obtain xn.10.3 The inverse z-TransformOr usingWe can obtain xn.10.3 The inve
16、rse z-Transform10.3 The inverse z-TransformExample:Determine the inverse z-transform.Solution:10.3 The inverse z-Transform10.3 The inverse z-Transform10.3 The inverse z-TransformExample 10.9 10.10 10.11 Determine the inverse z-transform of X(z).10.3 The inverse z-Transform(3).10.3 The inverse z-Tran
17、sformIf X(z) is not rational , compute xn by the following relationshipsLong division (Taylors series) 長除法(泰勒級(jí)數(shù)展開法)(a)(b)Example 10.12 10.14Determine the inverse z-transform of X(z).10.3 The inverse z-Transform(a)(b)Example 10.13Determine the inverse z-transform of X(z) by long division.10.3 The inv
18、erse z-Transform(a)10.3 The inverse z-TransformSolution:11-az-11+ az-1+a2z-2+1-az-1az-1az-1-a2z-2a2z-2(b)10.3 The inverse z-TransformSolution:1-az-1+1- a-1z-a-2z2-1-a-1za-1za-1z-a-2z2a-2z210.5 Properties of the z-Transform(1) Linearity10.5 properties of the z-Transform10.5 properties of the z-Transf
19、orm線性性質(zhì): 線性組合后的收斂域R是線性組合前兩個(gè)信號(hào)的收斂域R1與R2的公共區(qū)域. 如果在線性組合過程中出現(xiàn)零點(diǎn)與極點(diǎn)相抵消的情況,則收斂域可能會(huì)擴(kuò)大.10.5 properties of the z-TransformExample:(2) Time shifting10.5 properties of the z-Transform10.5 properties of the z-Transform(3) Scaling in the z-domain可見:z平面上的尺度展縮,等效于xn乘以指數(shù)序列。當(dāng)z0為復(fù)指數(shù)時(shí), z平面上的尺度展縮對(duì)應(yīng)于Z平面上的點(diǎn)沿角度方向進(jìn)行旋轉(zhuǎn),沿徑向方
20、向伸張或壓縮。(4) Time Reversal10.5 properties of the z-Transform(5) Time expansion10.5 properties of the z-Transform(6) Conjugation (7) Convolution property10.5 properties of the z-TransformFirst difference:Accumulation:Example 10.15 10.1610.5 properties of the z-Transform(8) Differentiation in the z-domain10.5 properties of the z-TransformExample 10.17 10.18 Find the inverse z- transform of X(z).(a)(b)10.5 properties of the z-Transform(9)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 口腔牙拔除術(shù)課件
- 口腔手術(shù)分級(jí)培訓(xùn)課件
- 口腔全瓷課件
- 口算大比拼課件
- 江蘇省連云港市2025-2026學(xué)年第一學(xué)期期末考試高一語文試題及參考答案
- 2026年漁業(yè)合作社魚類疫病應(yīng)急處置演練方案
- 2026年鄭州化工總控工試題庫及答案
- 安全生產(chǎn)文件和檔案管理制度
- 2026年園藝科學(xué)與技術(shù)考試試題及答案
- 健康服務(wù)業(yè)發(fā)展承諾書(8篇)
- 市安全生產(chǎn)例會(huì)制度
- 高新區(qū)服務(wù)規(guī)范制度
- 小程序維護(hù)更新合同協(xié)議2025
- 中國自有品牌發(fā)展研究報(bào)告2025-2026
- 2025年豆制品千張銷量及餐桌烹飪調(diào)研匯報(bào)
- 地形測(cè)量投標(biāo)標(biāo)書技術(shù)設(shè)計(jì)書
- 2025及未來5年馬桶水箱組合項(xiàng)目投資價(jià)值分析報(bào)告
- 合伙建廠合同協(xié)議書
- 代建合同安全協(xié)議書
- 歷屆湖北華師一附中自主招生物理試題
- GM/T 0002-2012SM4分組密碼算法
評(píng)論
0/150
提交評(píng)論