湖北省荊門市龍泉中學(xué)2023學(xué)年高考壓軸卷數(shù)學(xué)試卷(含解析)_第1頁
湖北省荊門市龍泉中學(xué)2023學(xué)年高考壓軸卷數(shù)學(xué)試卷(含解析)_第2頁
湖北省荊門市龍泉中學(xué)2023學(xué)年高考壓軸卷數(shù)學(xué)試卷(含解析)_第3頁
湖北省荊門市龍泉中學(xué)2023學(xué)年高考壓軸卷數(shù)學(xué)試卷(含解析)_第4頁
湖北省荊門市龍泉中學(xué)2023學(xué)年高考壓軸卷數(shù)學(xué)試卷(含解析)_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2023學(xué)年高考數(shù)學(xué)模擬測試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認(rèn)真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知向量,若,則( )ABCD2已知邊長為4的菱形,為的中點,為平面內(nèi)一點,若,則( )A16B14C12D83已知集合,則( )ABCD4雙曲線:(,)的一個焦點為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為( )ABCD5某

2、幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為( )ABC1D6為研究語文成績和英語成績之間是否具有線性相關(guān)關(guān)系,統(tǒng)計兩科成績得到如圖所示的散點圖(兩坐標(biāo)軸單位長度相同),用回歸直線近似地刻畫其相關(guān)關(guān)系,根據(jù)圖形,以下結(jié)論最有可能成立的是()A線性相關(guān)關(guān)系較強(qiáng),b的值為1.25B線性相關(guān)關(guān)系較強(qiáng),b的值為0.83C線性相關(guān)關(guān)系較強(qiáng),b的值為0.87D線性相關(guān)關(guān)系太弱,無研究價值7若函數(shù)()的圖象過點,則( )A函數(shù)的值域是B點是的一個對稱中心C函數(shù)的最小正周期是D直線是的一條對稱軸8命題:的否定為ABCD9甲、乙、丙三人相約晚上在某地會面,

3、已知這三人都不會違約且無兩人同時到達(dá),則甲第一個到、丙第三個到的概率是( )ABCD10如圖所示,在平面直角坐標(biāo)系中,是橢圓的右焦點,直線與橢圓交于,兩點,且,則該橢圓的離心率是( )ABCD11已知點P不在直線l、m上,則“過點P可以作無數(shù)個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的( )A充分不必要條件B必要不充分條件C充分必要條件D既不充分也不必要條件12已知命題p:直線ab,且b平面,則a;命題q:直線l平面,任意直線m,則lm.下列命題為真命題的是( )ApqBp(非q)C(非p)qDp(非q)二、填空題:本題共4小題,每小題5分,共20分。13如圖,橢圓:的離

4、心率為,F(xiàn)是的右焦點,點P是上第一角限內(nèi)任意一點,若,則的取值范圍是_14根據(jù)如圖所示的偽代碼,輸出的值為_.15已知多項式的各項系數(shù)之和為32,則展開式中含項的系數(shù)為_16已知邊長為的菱形中,現(xiàn)沿對角線折起,使得二面角為,此時點,在同一個球面上,則該球的表面積為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在世界讀書日期間,某地區(qū)調(diào)查組對居民閱讀情況進(jìn)行了調(diào)查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地

5、有關(guān)?城鎮(zhèn)居民農(nóng)村居民合計經(jīng)常閱讀10030不經(jīng)常閱讀合計200(2)調(diào)查組從該樣本的城鎮(zhèn)居民中按分層抽樣抽取出7人,參加一次閱讀交流活動,若活動主辦方從這7位居民中隨機(jī)選取2人作交流發(fā)言,求被選中的2位居民都是經(jīng)常閱讀居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82818(12分)設(shè)首項為1的正項數(shù)列an的前n項和為Sn,數(shù)列的前n項和為Tn,且,其中p為常數(shù)(1)求p的值;(2)求證:數(shù)列an為等比數(shù)列;(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“

6、x1,且y2”19(12分)如圖,在四棱錐中,平面平面,.()求證:平面;()若銳二面角的余弦值為,求直線與平面所成的角.20(12分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.21(12分)ABC的內(nèi)角的對邊分別為,已知ABC的面積為(1)求;(2)若求ABC的周長.22(10分)我國在2018年社保又出新的好消息,之前流動就業(yè)人員跨地區(qū)就業(yè)后,社保轉(zhuǎn)移接續(xù)的手續(xù)往往比較繁瑣,費時費力.社保改革后將簡化手續(xù),深得流動就業(yè)人員的贊譽(yù).某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時間(天)與人

7、數(shù)的頻數(shù)分布表:時間人數(shù)156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續(xù)所需時間與是否流動人員的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“辦理社保手續(xù)所需時間與是否流動人員”有關(guān).列聯(lián)表如下流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天辦理社保手續(xù)所需時間超過4天60總計21090300(2)為了改進(jìn)工作作風(fēng),提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數(shù)為,求出分布列及期望值.附:0.100

8、.050.0100.0052.7063.8416.6357.8792023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【答案解析】根據(jù)向量坐標(biāo)運(yùn)算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【題目詳解】, ,解得:故選:【答案點睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問題,涉及到平面向量的坐標(biāo)運(yùn)算;關(guān)鍵是明確若兩向量平行,則.2、B【答案解析】取中點,可確定;根據(jù)平面向量線性運(yùn)算和數(shù)量積的運(yùn)算法則可求得,利用可求得結(jié)果.【題目詳解】取中點,連接,即.,則.故選:.【答案點睛】本題考查平面向量數(shù)量積的求解

9、問題,涉及到平面向量的線性運(yùn)算,關(guān)鍵是能夠?qū)⑺笙蛄窟M(jìn)行拆解,進(jìn)而利用平面向量數(shù)量積的運(yùn)算性質(zhì)進(jìn)行求解.3、B【答案解析】計算,再計算交集得到答案【題目詳解】,表示偶數(shù),故.故選:.【答案點睛】本題考查了集合的交集,意在考查學(xué)生的計算能力.4、A【答案解析】根據(jù)題意得到,化簡得到,得到答案.【題目詳解】根據(jù)題意知:焦點到漸近線的距離為,故,故漸近線為.故選:.【答案點睛】本題考查了直線和圓的位置關(guān)系,雙曲線的漸近線,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.5、B【答案解析】首先由三視圖還原幾何體,進(jìn)一步求出幾何體的棱長【題目詳解】解:根據(jù)三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為故選:

10、B【答案點睛】本題主要考查由三視圖還原幾何體,考查運(yùn)算能力和推理能力,屬于基礎(chǔ)題6、B【答案解析】根據(jù)散點圖呈現(xiàn)的特點可以看出,二者具有相關(guān)關(guān)系,且斜率小于1.【題目詳解】散點圖里變量的對應(yīng)點分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強(qiáng)的線性相關(guān)關(guān)系,且直線斜率小于1,故選B.【答案點睛】本題主要考查散點圖的理解,側(cè)重考查讀圖識圖能力和邏輯推理的核心素養(yǎng).7、A【答案解析】根據(jù)函數(shù)的圖像過點,求出,可得,再利用余弦函數(shù)的圖像與性質(zhì),得出結(jié)論.【題目詳解】由函數(shù)()的圖象過點,可得,即,故,對于A,由,則,故A正確;對于B,當(dāng)時,故B錯誤;對于C,故C錯誤;對于D,當(dāng)時

11、,故D錯誤;故選:A【答案點睛】本題主要考查了二倍角的余弦公式、三角函數(shù)的圖像與性質(zhì),需熟記性質(zhì)與公式,屬于基礎(chǔ)題.8、C【答案解析】命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C9、D【答案解析】先判斷是一個古典概型,列舉出甲、乙、丙三人相約到達(dá)的基本事件種數(shù),再得到甲第一個到、丙第三個到的基本事件的種數(shù),利用古典概型的概率公式求解.【題目詳解】甲、乙、丙三人相約到達(dá)的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個到、丙第三個到有甲乙丙,共1種,所以甲第一個到、丙第三個到的概率是. 故選:D【答案點睛】本題主

12、要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎(chǔ)題.10、A【答案解析】聯(lián)立直線方程與橢圓方程,解得和的坐標(biāo),然后利用向量垂直的坐標(biāo)表示可得,由離心率定義可得結(jié)果.【題目詳解】由,得,所以,.由題意知,所以,.因為,所以,所以.所以,所以,故選:A.【答案點睛】本題考查了直線與橢圓的交點,考查了向量垂直的坐標(biāo)表示,考查了橢圓的離心率公式,屬于基礎(chǔ)題.11、C【答案解析】根據(jù)直線和平面平行的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可【題目詳解】點不在直線、上,若直線、互相平行,則過點可以作無數(shù)個平面,使得直線、都與這些平面平行,即必要性成立,若過點可以作無數(shù)個平面,使得直線、都與這

13、些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點可以作無數(shù)個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:【答案點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合空間直線和平面平行的性質(zhì)是解決本題的關(guān)鍵12、C【答案解析】首先判斷出為假命題、為真命題,然后結(jié)合含有簡單邏輯聯(lián)結(jié)詞命題的真假性,判斷出正確選項.【題目詳解】根據(jù)線面平行的判定,我們易得命題若直線,直線平面,則直線平面或直線在平面內(nèi),命題為假命題;根據(jù)線面垂直的定義,我們易得命題若直線平面,則若直線與

14、平面內(nèi)的任意直線都垂直,命題為真命題.故:A命題“”為假命題;B命題“”為假命題;C命題“”為真命題;D命題“”為假命題.故選:C.【答案點睛】本小題主要考查線面平行與垂直有關(guān)命題真假性的判斷,考查含有簡單邏輯聯(lián)結(jié)詞的命題的真假性判斷,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】由于點在橢圓上運(yùn)動時,與軸的正方向的夾角在變,所以先設(shè),又由,可知,從而可得,而點在橢圓上,所以將點的坐標(biāo)代入橢圓方程中化簡可得結(jié)果【題目詳解】設(shè),則,由,得,代入橢圓方程,得,化簡得恒成立,由此得,即,故故答案為:【答案點睛】此題考查的是利用橢圓中相關(guān)兩個點的關(guān)系求離心率,綜合性強(qiáng),

15、屬于難題 14、7【答案解析】表示初值S=1,i=1,分三次循環(huán)計算得S=100,輸出i=7.【題目詳解】S=1,i=1第一次循環(huán):S=1+1=2,i=1+2=3;第二次循環(huán):S=2+3=5,i=3+2=5;第三次循環(huán):S=5+5=10,i=5+2=7;S=109,循環(huán)結(jié)束,輸出:i=7.故答案為:7【答案點睛】本題考查在程序語句的背景下已知輸入的循環(huán)結(jié)構(gòu)求輸出值問題,屬于基礎(chǔ)題.15、【答案解析】令可得各項系數(shù)和為,得出,根據(jù)第一個因式展開式的常數(shù)項與第二個因式的展開式含一次項的積與第一個因式展開式含x的一次項與第二個因式常數(shù)項的積的和即為展開式中含項,可得解.【題目詳解】令,則得,解得,所

16、以展開式中含項為:,故答案為:【答案點睛】本題主要考查了二項展開式的系數(shù)和,二項展開式特定項,賦值法,屬于中檔題.16、【答案解析】分別取,的中點,連接,由圖形的對稱性可知球心必在的延長線上,設(shè)球心為,半徑為,由勾股定理可得、,再根據(jù)球的面積公式計算可得;【題目詳解】如圖,分別取,的中點,連接,則易得,由圖形的對稱性可知球心必在的延長線上,設(shè)球心為,半徑為,可得,解得,.故該球的表面積為.故答案為:【答案點睛】本題考查多面體的外接球的計算,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析,有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān).(2)【答案解析】

17、(1)根據(jù)題中數(shù)據(jù)得到列聯(lián)表,然后計算出,與臨界值表中的數(shù)據(jù)對照后可得結(jié)論;(2)由題意得概率為古典概型,根據(jù)古典概型概率公式計算可得所求.【題目詳解】(1)由題意可得:城鎮(zhèn)居民農(nóng)村居民合計經(jīng)常閱讀10030130不經(jīng)常閱讀403070合計14060200則,所以有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān).(2)在城鎮(zhèn)居民140人中,經(jīng)常閱讀的有100人,不經(jīng)常閱讀的有40人.采取分層抽樣抽取7人,則其中經(jīng)常閱讀的有5人,記為、;不經(jīng)常閱讀的有2人,記為、.從這7人中隨機(jī)選取2人作交流發(fā)言,所有可能的情況為,共21種,被選中的位居民都是經(jīng)常閱讀居民的情況有種,所求概率為.【答案點睛】本題主要考

18、查古典概型的概率計算,以及獨立性檢驗的應(yīng)用,利用列舉法是解決本題的關(guān)鍵,考查學(xué)生的計算能力.對于古典概型,要求事件總數(shù)是可數(shù)的,滿足條件的事件個數(shù)可數(shù),使得滿足條件的事件個數(shù)除以總的事件個數(shù)即可,屬于中檔題.18、(1)p2;(2)見解析(3)見解析【答案解析】(1)取n1時,由得p0或2,計算排除p0的情況得到答案.(2),則,相減得到3an+14Sn+1Sn,再化簡得到,得到證明.(3)分別證明充分性和必要性,假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),計算化簡得2x2y21,設(shè)kx(y2),計算得到k1,得到答案.【題目詳解】(1)n1時,由得p0或2,若p0時,

19、當(dāng)n2時,解得a20或,而an0,所以p0不符合題意,故p2;(2)當(dāng)p2時,則,并化簡得3an+14Sn+1Sn,則3an+24Sn+2Sn+1,得(nN*),又因為,所以數(shù)列an是等比數(shù)列,且;(3)充分性:若x1,y2,由知an,2xan+1,2yan+2依次為,滿足,即an,2xan+1,2yan+2成等差數(shù)列;必要性:假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),又,所以,化簡得2x2y21,顯然xy2,設(shè)kx(y2),因為x、y均為整數(shù),所以當(dāng)k2時,2x2y21或2x2y21,故當(dāng)k1,且當(dāng)x1,且y20時上式成立,即證【答案點睛】本題考查了根據(jù)數(shù)列求參數(shù),

20、證明等比數(shù)列,充要條件,意在考查學(xué)生的綜合應(yīng)用能力.19、()詳見解析;().【答案解析】()由余弦定理解得,即可得到,由面面垂直的性質(zhì)可得平面,即可得到,從而得證;()在平面中,過點作于點,則平面,如圖所示建立空間直角坐標(biāo)系,設(shè),其中,利用空間向量法得到二面角的余弦,即可得到的關(guān)系,從而得解;【題目詳解】解:()證明:在中,解得,則,從而因為平面平面,平面平面所以平面,又因為平面,所以,因為,平面,平面,所以平面;() 解:在平面中,過點作于點,則平面,如圖所示建立空間直角坐標(biāo)系,設(shè),其中,則設(shè)平面的法向量為,則,即,令,則又平面的一個法向量,則從而,故則直線與平面所成的角為,大小為.【答案

21、點睛】本題考查線面垂直的判定,面面垂直的性質(zhì)定理的應(yīng)用,利用空間向量法解決立體幾何問題,屬于中檔題.20、(1)證明見解析(2)【答案解析】(1)由底面為菱形,得,再由底面,可得,結(jié)合線面垂直的判定可得平面;(2)以點為坐標(biāo)原點,以所在直線及過點且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系,分別求出平面與平面的一個法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.【題目詳解】(1)證明:底面為菱形,底面,平面,又,平面,平面;(2)解:,為等邊三角形,.底面,是直線與平面所成的角為,在中,由,解得.如圖,以點為坐標(biāo)原點,以所在直線及過點且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系.則,.,.設(shè)平面與平面的一個法向量分別為,.由,取,得;由,取,得.平面與平面所成銳二面角的余弦值為.【答案點睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓(xùn)練了利用空間向量求解空間角,屬于中檔題21、 (1)(2) .【答案解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計算出,從而求出角,根據(jù)題設(shè)和余弦定理可以求出和的值,從而求出的周

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論