2022年浙江?。刂荩┲锌紨?shù)學(xué)模擬預(yù)測試卷含解析_第1頁
2022年浙江?。刂荩┲锌紨?shù)學(xué)模擬預(yù)測試卷含解析_第2頁
2022年浙江省(溫州)中考數(shù)學(xué)模擬預(yù)測試卷含解析_第3頁
2022年浙江省(溫州)中考數(shù)學(xué)模擬預(yù)測試卷含解析_第4頁
2022年浙江?。刂荩┲锌紨?shù)學(xué)模擬預(yù)測試卷含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖是一次數(shù)學(xué)活動課制作的一個轉(zhuǎn)盤,盤面被等分成四個扇形區(qū)域,并分別標(biāo)有數(shù)字-1,0,1,2.若轉(zhuǎn)動轉(zhuǎn)盤兩次,每次轉(zhuǎn)盤停止后記錄指針?biāo)竻^(qū)域的數(shù)字(當(dāng)指針恰好指在分界線上時,不記,重轉(zhuǎn)),則記錄的兩個數(shù)字都是正數(shù)的概率為()A. B. C. D.2.設(shè)x1,x2是方程x2-2x-1=0的兩個實數(shù)根,則的值是()A.-6 B.-5 C.-6或-5 D.6或53.如圖,在平面直角坐標(biāo)系中,以O(shè)為圓心,適當(dāng)長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點P.若點P的坐標(biāo)為(2a,b+1),則a與b的數(shù)量關(guān)系為()A.a(chǎn)=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=14.1﹣的相反數(shù)是()A.1﹣ B.﹣1 C. D.﹣15.的相反數(shù)是()A. B.2 C. D.6.下圖是由八個相同的小正方體組合而成的幾何體,其左視圖是()A. B. C. D.7.某運動會頒獎臺如圖所示,它的主視圖是()A. B. C. D.8.?dāng)?shù)軸上有A,B,C,D四個點,其中絕對值大于2的點是()A.點A B.點B C.點C D.點D9.如圖,中,,,將繞點逆時針旋轉(zhuǎn)得到,使得,延長交于點,則線段的長為()A.4 B.5 C.6 D.710.一元二次方程x2+kx﹣3=0的一個根是x=1,則另一個根是()A.3 B.﹣1 C.﹣3 D.﹣2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖是矗立在高速公路水平地面上的交通警示牌,經(jīng)測量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為_米.(結(jié)果精確到0.1米,參考數(shù)據(jù):2≈1.41,3≈1.73)12.已知x(x+1)=x+1,則x=________.13.如圖,點M、N分別在∠AOB的邊OA、OB上,將∠AOB沿直線MN翻折,設(shè)點O落在點P處,如果當(dāng)OM=4,ON=3時,點O、P的距離為4,那么折痕MN的長為______.14.已知一次函數(shù)y=ax+b,且2a+b=1,則該一次函數(shù)圖象必經(jīng)過點_____.15.如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=(x<0)的圖象相交于點A和點B.當(dāng)y1>y2>0時,x的取值范圍是_____.16.二次函數(shù)的圖象如圖所示,給出下列說法:①;②方程的根為,;③;④當(dāng)時,隨值的增大而增大;⑤當(dāng)時,.其中,正確的說法有________(請寫出所有正確說法的序號).三、解答題(共8題,共72分)17.(8分)計算:2-1+20160-3tan30°+|-|18.(8分)我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識答題競賽”,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學(xué)校決賽,兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.平均分(分)中位數(shù)(分)眾數(shù)(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根據(jù)圖示計算出a、b、c的值;結(jié)合兩隊成績的平均數(shù)和中位數(shù)進行分析,哪個隊的決賽成績較好?計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩(wěn)定.19.(8分)如圖,AB為☉O的直徑,CD與☉O相切于點E,交AB的延長線于點D,連接BE,過點O作OC∥BE,交☉O于點F,交切線于點C,連接AC.(1)求證:AC是☉O的切線;(2)連接EF,當(dāng)∠D=°時,四邊形FOBE是菱形.20.(8分)計算:2tan45°-(-)o-21.(8分)圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上.(1)如圖1,點P在小正方形的頂點上,在圖1中作出點P關(guān)于直線AC的對稱點Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長;(2)在圖2中畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點B和點D均在小正方形的頂點上.22.(10分)如圖,∠A=∠D,∠B=∠E,AF=DC.求證:BC=EF.23.(12分)如圖,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,點E在AB上,求證:△CDA≌△CEB.24.如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B作⊙O的切線交直線AC于點D,點E為CH的中點,連接AE并延長交BD于點F,直線CF交AB的延長線于G.(1)求證:AE?FD=AF?EC;(2)求證:FC=FB;(3)若FB=FE=2,求⊙O的半徑r的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

列表得,

1

2

0

-1

1

(1,1)

(1,2)

(1,0)

(1,-1)

2

(2,1)

(2,2)

(2,0)

(2,-1)

0

(0,1)

(0,2)

(0,0)

(0,-1)

-1

(-1,1)

(-1,2)

(-1,0)

(-1,-1)

由表格可知,總共有16種結(jié)果,兩個數(shù)都為正數(shù)的結(jié)果有4種,所以兩個數(shù)都為正數(shù)的概率為,故選C.考點:用列表法(或樹形圖法)求概率.2、A【解析】試題解析:∵x1,x2是方程x2-2x-1=0的兩個實數(shù)根,∴x1+x2=2,x1?x2=-1∴=.故選A.3、B【解析】試題分析:根據(jù)作圖方法可得點P在第二象限角平分線上,則P點橫縱坐標(biāo)的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.4、B【解析】

根據(jù)相反數(shù)的的定義解答即可.【詳解】根據(jù)a的相反數(shù)為-a即可得,1﹣的相反數(shù)是﹣1.故選B.【點睛】本題考查了相反數(shù)的定義,熟知相反數(shù)的定義是解決問題的關(guān)鍵.5、D【解析】

因為-+=0,所以-的相反數(shù)是.故選D.6、B【解析】

解:找到從左面看所得到的圖形,從左面可看到從左往右三列小正方形的個數(shù)為:2,3,1.故選B.7、C【解析】

從正面看到的圖形如圖所示:,故選C.8、A【解析】

根據(jù)絕對值的含義和求法,判斷出絕對值等于2的數(shù)是﹣2和2,據(jù)此判斷出絕對值等于2的點是哪個點即可.【詳解】解:∵絕對值等于2的數(shù)是﹣2和2,∴絕對值等于2的點是點A.故選A.【點睛】此題主要考查了絕對值的含義和求法,要熟練掌握,解答此題的關(guān)鍵要明確:①互為相反數(shù)的兩個數(shù)絕對值相等;②絕對值等于一個正數(shù)的數(shù)有兩個,絕對值等于0的數(shù)有一個,沒有絕對值等于負數(shù)的數(shù).③有理數(shù)的絕對值都是非負數(shù).9、B【解析】

先利用已知證明,從而得出,求出BD的長度,最后利用求解即可.【詳解】故選:B.【點睛】本題主要考查相似三角形的判定及性質(zhì),掌握相似三角形的性質(zhì)是解題的關(guān)鍵.10、C【解析】試題分析:根據(jù)根與系數(shù)的關(guān)系可得出兩根的積,即可求得方程的另一根.設(shè)m、n是方程x2+kx﹣3=0的兩個實數(shù)根,且m=x=1;則有:mn=﹣3,即n=﹣3;故選C.【考點】根與系數(shù)的關(guān)系;一元二次方程的解.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.9【解析】試題分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考點:解直角三角形.12、1或-1【解析】方程可化為:,∴或,∴或.故答案為1或-1.13、【解析】

由折疊的性質(zhì)可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的長,即可求MN的長.【詳解】設(shè)MN與OP交于點E,

∵點O、P的距離為4,

∴OP=4

∵折疊

∴MN⊥OP,EO=EP=2,

在Rt△OME中,ME=在Rt△ONE中,NE=∴MN=ME-NE=2-故答案為2-【點睛】本題考查了翻折變換,勾股定理,利用勾股定理求線段的長度是本題的關(guān)鍵.14、(2,1)【解析】∵一次函數(shù)y=ax+b,∴當(dāng)x=2,y=2a+b,又2a+b=1,∴當(dāng)x=2,y=1,即該圖象一定經(jīng)過點(2,1).故答案為(2,1).15、-2<x<-0.5【解析】

根據(jù)圖象可直接得到y(tǒng)1>y2>0時x的取值范圍.【詳解】根據(jù)圖象得:當(dāng)y1>y2>0時,x的取值范圍是﹣2<x<﹣0.5,故答案為﹣2<x<﹣0.5.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,熟悉待定系數(shù)法以及理解函數(shù)圖象與不等式的關(guān)系是解題的關(guān)鍵.16、①②④【解析】

根據(jù)拋物線的對稱軸判斷①,根據(jù)拋物線與x軸的交點坐標(biāo)判斷②,根據(jù)函數(shù)圖象判斷③④⑤.【詳解】解:∵對稱軸是x=-=1,∴ab<0,①正確;∵二次函數(shù)y=ax2+bx+c的圖象與x軸的交點坐標(biāo)為(-1,0)、(3,0),∴方程x2+bx+c=0的根為x1=-1,x2=3,②正確;∵當(dāng)x=1時,y<0,∴a+b+c<0,③錯誤;由圖象可知,當(dāng)x>1時,y隨x值的增大而增大,④正確;當(dāng)y>0時,x<-1或x>3,⑤錯誤,故答案為①②④.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)之間的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定.三、解答題(共8題,共72分)17、【解析】

原式第一項利用負指數(shù)冪法則計算,第二項利用零指數(shù)冪法則計算,第三項利用特殊角的三角函數(shù)值化簡,最后一項利用絕對值的代數(shù)意義化簡,即可得到結(jié)果;【詳解】原式===.【點睛】此題考查實數(shù)的混合運算.此題難度不大,注意解決此類題目的關(guān)鍵是熟練掌握負整數(shù)指數(shù)冪、零指數(shù)冪、特殊角的三角函數(shù)值、絕對值等考點的運算.18、(1)85,85,80;(2)初中部決賽成績較好;(3)初中代表隊選手成績比較穩(wěn)定.【解析】

分析:(1)根據(jù)成績表,結(jié)合平均數(shù)、眾數(shù)、中位數(shù)的計算方法進行解答;(2)比較初中部、高中部的平均數(shù)和中位數(shù),結(jié)合比較結(jié)果得出結(jié)論;(3)利用方差的計算公式,求出初中部的方差,結(jié)合方差的意義判斷哪個代表隊選手的成績較為穩(wěn)定.【詳解】詳解:(1)初中5名選手的平均分,眾數(shù)b=85,高中5名選手的成績是:70,75,80,100,100,故中位數(shù)c=80;(2)由表格可知初中部與高中部的平均分相同,初中部的中位數(shù)高,故初中部決賽成績較好;(3)=70,∵,∴初中代表隊選手成績比較穩(wěn)定.【點睛】本題是一道有關(guān)條形統(tǒng)計圖、平均數(shù)、眾數(shù)、中位數(shù)、方差的統(tǒng)計類題目,掌握平均數(shù)、眾數(shù)、中位數(shù)、方差的概念及計算方法是解題的關(guān)鍵.19、(1)詳見解析;(2)30.【解析】

(1)利用切線的性質(zhì)得∠CEO=90°,再證明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根據(jù)切線的判定定理得到結(jié)論;(2)利用四邊形FOBE是菱形得到OF=OB=BF=EF,則可判定△OBE為等邊三角形,所以∠BOE=60°,然后利用互余可確定∠D的度數(shù).【詳解】(1)證明:∵CD與⊙O相切于點E,∴OE⊥CD,∴∠CEO=90°,又∵OC∥BE,∴∠COE=∠OEB,∠OBE=∠COA∵OE=OB,∴∠OEB=∠OBE,∴∠COE=∠COA,又∵OC=OC,OA=OE,∴△OCA≌△OCE(SAS),∴∠CAO=∠CEO=90°,又∵AB為⊙O的直徑,∴AC為⊙O的切線;(2)∵四邊形FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴△OBE為等邊三角形,∴∠BOE=60°,而OE⊥CD,∴∠D=30°.【點睛】本題考查了切線的判定與性質(zhì):經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常?!坝龅角悬c連圓心得半徑”.也考查了圓周角定理.20、2-【解析】

先求三角函數(shù),再根據(jù)實數(shù)混合運算法計算.【詳解】解:原式=2×1-1-=1+1-=2-【點睛】此題重點考察學(xué)生對三角函數(shù)值的應(yīng)用,掌握特殊角的三角函數(shù)值是解題的關(guān)鍵.21、(1)作圖見解析;;(2)作圖見解析.【解析】試題分析:(1)通過數(shù)格子可得到點P關(guān)于AC的對稱點,再直接利用勾股定理可得到周長;(2)利用網(wǎng)格結(jié)合矩形的性質(zhì)以及勾股定理可畫出矩形.試題解析:(1)如圖1所示:四邊形AQCP即為所求,它的周長為:;(2)如圖2所示:四邊形ABCD即為所求.考點:1軸對稱;2勾股定理.22、證明見解析.【解析】

想證明BC=EF,可利用AAS證明△ABC≌△DEF即可.【詳解】解:∵AF=DC,∴AF+FC=FC+CD,∴AC=FD,在△ABC和△DEF中,∴△ABC≌△DEF(AAS)∴BC=EF.【點睛】本題考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.23、見解析.【解析】試題分析:根據(jù)等腰直角三角形的性質(zhì)得出CE=CD,BC=AC,再利用全等三角形的判定證明即可.試題解析:證明:∵△ABC、△CDE均為等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,在△CDA與△CEB中,BC=AC∠ECB=∠DAC∴△CDA≌△CEB.考點:全等三角形的判定;等腰直角三角形.24、(1)詳見解析;(2)詳見解析;(3)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論