2022-2023學(xué)年河南省南陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022-2023學(xué)年河南省南陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022-2023學(xué)年河南省南陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022-2023學(xué)年河南省南陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022-2023學(xué)年河南省南陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩30頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年河南省南陽(yáng)市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解

2.若函數(shù)f(x)=5x,則f'(x)=

A.5x-1

B.x5x-1

C.5xln5

D.5x

3.

4.設(shè)z=ln(x2+y),則等于()。A.

B.

C.

D.

5.一端固定,一端為彈性支撐的壓桿,如圖所示,其長(zhǎng)度系數(shù)的范圍為()。

A.μ<0.7B.μ>2C.0.7<μ<2D.不能確定

6.設(shè)y=2^x,則dy等于().

A.x.2x-1dx

B.2x-1dx

C.2xdx

D.2xln2dx

7.等于()。A.-1B.-1/2C.1/2D.1

8.

9.設(shè)f(x)在x=0處有二階連續(xù)導(dǎo)數(shù)

則x=0是f(x)的()。

A.間斷點(diǎn)B.極大值點(diǎn)C.極小值點(diǎn)D.拐點(diǎn)

10.

11.設(shè)y=exsinx,則y'''=

A.cosx·ex

B.sinx·ex

C.2ex(cosx-sinx)

D.2ex(sinx-cosx)

12.

13.

14.

15.點(diǎn)M(4,-3,5)到Ox軸的距離d=()A.A.

B.

C.

D.

16.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿足拉格朗日中值定理的ξ等于().

A.-3/4B.0C.3/4D.1

17.

18.

19.微分方程y"-y'=0的通解為()。A.

B.

C.

D.

20.

21.A.A.

B.

C.

D.

22.設(shè)函數(shù)f(x)=sinx,則不定積分∫f'(x)dx=A.A.sinx+CB.cosx+CC.-sinx+CD.-cosx+C23.A.1/x2

B.1/x

C.e-x

D.1/(1+x)2

24.

25.

26.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx

27.方程x2+2y2-z2=0表示的二次曲面是()

A.橢球面B.錐面C.旋轉(zhuǎn)拋物面D.柱面28.用待定系數(shù)法求微分方程y"-y=xex的一個(gè)特解時(shí),特解的形式是(式中α、b是常數(shù))。A.(αx2+bx)ex

B.(αx2+b)ex

C.αx2ex

D.(αx+b)ex

29.直線l與x軸平行,且與曲線y=x-ex相切,則切點(diǎn)的坐標(biāo)是()A.A.(1,1)

B.(-1,1)

C.(0,-l)

D.(0,1)

30.∫1+∞e-xdx=()

A.-eB.-e-1

C.e-1

D.e31.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx

32.A.1/3B.1C.2D.3

33.

34.

35.若收斂,則下面命題正確的是()A.A.

B.

C.

D.

36.設(shè)y=3-x,則y'=()。A.-3-xln3

B.3-xlnx

C.-3-x-1

D.3-x-1

37.A.dx+dyB.1/3·(dx+dy)C.2/3·(dx+dy)D.2(dx+dy)38.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0

B.△<dy<0

C.dy>Ay>0

D.dy<△y<0

39.收入預(yù)算的主要內(nèi)容是()

A.銷售預(yù)算B.成本預(yù)算C.生產(chǎn)預(yù)算D.現(xiàn)金預(yù)算

40.設(shè)y=2x3,則dy=().

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

41.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于().A.A.0B.π/4C.π/2D.π42.A.A.條件收斂B.絕對(duì)收斂C.收斂性與k有關(guān)D.發(fā)散

43.

44.設(shè)區(qū)域,將二重積分在極坐標(biāo)系下化為二次積分為()A.A.

B.

C.

D.

45.A.-3-xln3

B.-3-x/ln3

C.3-x/ln3

D.3-xln3

46.

47.微分方程y''-2y'=x的特解應(yīng)設(shè)為

A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c

48.A.充分條件B.必要條件C.充要條件D.以上都不對(duì)

49.

50.

A.2B.1C.1/2D.0二、填空題(20題)51.

52.設(shè)y=5+lnx,則dy=________。53.

54.

55.設(shè)z=x3y2,則=________。

56.

57.58.

59.

60.

61.設(shè)f(x)=ax3-6ax2+b在區(qū)間[-1,2]的最大值為2,最小值為-29,又知a>0,則a,b的取值為______.

62.曲線y=(x+1)/(2x+1)的水平漸近線方程為_________.

63.64.65.

66.

67.68.

69.

70.

三、計(jì)算題(20題)71.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

72.

73.求微分方程的通解.74.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則75.76.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

77.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

78.將f(x)=e-2X展開為x的冪級(jí)數(shù).79.80.

81.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.82.83.

84.

85.證明:86.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.87.求曲線在點(diǎn)(1,3)處的切線方程.88.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

89.求微分方程y"-4y'+4y=e-2x的通解.

90.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

四、解答題(10題)91.計(jì)算∫xsinxdx。

92.將f(x)=e-2x展開為x的冪級(jí)數(shù),并指出其收斂區(qū)間。

93.

94.求∫sin(x+2)dx。

95.求方程(y-x2y)y'=x的通解.

96.

97.

98.一象限的封閉圖形.

99.

100.

五、高等數(shù)學(xué)(0題)101.∫(2xex+1)dx=___________。

六、解答題(0題)102.

參考答案

1.B如果y1,y2這兩個(gè)特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。

2.C本題考查了導(dǎo)數(shù)的基本公式的知識(shí)點(diǎn)。f'(x)=(5x)'=5xln5.

3.C

4.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。

5.D

6.D南微分的基本公式可知,因此選D.

7.C本題考查的知識(shí)點(diǎn)為定積分的運(yùn)算。

故應(yīng)選C。

8.D

9.C則x=0是f(x)的極小值點(diǎn)。

10.D

11.C本題考查了萊布尼茨公式的知識(shí)點(diǎn).

由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).

12.A解析:

13.C

14.D

15.B

16.D解析:本題考查的知識(shí)點(diǎn)為拉格朗日中值定理的條件與結(jié)論.

由于y=x2-x+1在[-1,3]上連續(xù),在(-1,3)內(nèi)可導(dǎo),可知y在[-1,3]上滿足拉格朗日中值定理,又由于y'=2x-1,因此必定存在ξ∈(-1,3),使

可知應(yīng)選D.

17.D解析:

18.A

19.B本題考查的知識(shí)點(diǎn)為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。

20.B

21.B

22.A由不定積分性質(zhì)∫f'(x)dx=f(x)+C,可知選A。

23.A本題考查了反常積分的斂散性的知識(shí)點(diǎn)。

24.A

25.B解析:

26.B

27.B對(duì)照二次曲面的標(biāo)準(zhǔn)方程,可知所給曲面為錐面,故選B。

28.Ay"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1

y"-y=xex中自由項(xiàng)f(x)=xex,α=1是特征單根,應(yīng)設(shè)y*=x(ax+b)ex=(αx2+bx)ex。

所以選A。

29.C

30.C

31.B

32.D解法1由于當(dāng)x一0時(shí),sinax~ax,可知故選D.

解法2故選D.

33.B解析:

34.A

35.D本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的基本性質(zhì).

由級(jí)數(shù)收斂的必要條件:若收斂,則必有,可知D正確.而A,B,C都不正確.

本題常有考生選取C,這是由于考生將級(jí)數(shù)收斂的定義存在,其中誤認(rèn)作是un,這屬于概念不清楚而導(dǎo)致的錯(cuò)誤.

36.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。

37.C本題考查了二元函數(shù)的全微分的知識(shí)點(diǎn),

38.B

39.A解析:收入預(yù)算的主要內(nèi)容是銷售預(yù)算。

40.B由微分基本公式及四則運(yùn)算法則可求得.也可以利用dy=y′dx求得故選B.

41.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論.

由于y=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),且y|x=0=0=y|x=π,可知y=sinx在[0,π]上滿足羅爾定理,因此必定存在ξ∈(0,π),使y'|x=ξ=cosx|x=ξ=cosξ=0,從而應(yīng)有.

故知應(yīng)選C.

42.A本題考杏的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.

43.A

44.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分.

由于在極坐標(biāo)系下積分區(qū)域D可以表示為

0≤θ≤π,0≤r≤a.

因此

故知應(yīng)選A.

45.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.

46.D

47.C本題考查了二階常系數(shù)微分方程的特解的知識(shí)點(diǎn)。

因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.

48.D極限是否存在與函數(shù)在該點(diǎn)有無定義無關(guān).

49.D

50.D本題考查的知識(shí)點(diǎn)為重要極限公式與無窮小量的性質(zhì).

51.

解析:

52.

53.

本題考查的知識(shí)點(diǎn)為隱函數(shù)的求導(dǎo).

54.55.由z=x3y2,得=2x3y,故dz=3x2y2dx+2x3ydy,。

56.2cos(x2+y2)(xdx+ydy)2cos(x2+y2)(xdx+ydy)解析:

57.

本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.

58.

本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

注意此處冪級(jí)數(shù)為缺項(xiàng)情形.

59.0

60.x--arctanx+C本題考查了不定積分的知識(shí)點(diǎn)。

61.

f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因?yàn)閍>0,所以,f''(0)<0,所以x=0是極值點(diǎn).又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因?yàn)閍>0,故當(dāng)x=0時(shí),f(x)最大,即b=2;當(dāng)x=2時(shí),f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=.

62.y=1/2本題考查了水平漸近線方程的知識(shí)點(diǎn)。

63.

64.本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,一3),因此可取n=(2,1,-3).由于平面過原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y一3z=0.

65.

66.

67.

本題考查的知識(shí)點(diǎn)為二重積分的性質(zhì).

68.

69.6x26x2

解析:

70.

71.

72.

73.74.由等價(jià)無窮小量的定義可知

75.

76.

列表:

說明

77.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

78.

79.80.由一階線性微分方程通解公式有

81.由二重積分物理意義知

82.

83.

84.

85.

86.函數(shù)的定義域?yàn)?/p>

注意

87.曲線方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論