版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
時域有限差分法第1講
一維標(biāo)量波動方程引言(1)1966年,K.S.Yee(美籍香港人)首先提出了Finite-DifferenceTime-DomainMethod,并用于柱形金屬柱電磁散射分析。由于當(dāng)時計算機(jī)技術(shù)還比較落后,這一方法并未引起重視。1972年,A.Taflovey應(yīng)用FDTD研究了UHF和微波對人類眼睛的穿透,以了解“微波白內(nèi)障”的成因。Taflove成功地應(yīng)用和發(fā)展了Yee的FDTD算法。80年代后期,隨著高速大容量計算機(jī)的普及,F(xiàn)DTD法得到了迅速發(fā)展。如今已應(yīng)用于涉及波動現(xiàn)象的任何領(lǐng)域。至今,F(xiàn)DTD法的研究與應(yīng)用仍方興未艾。引言(2)
本課程采用研討班形式。教師講授FDTD的基本知識,學(xué)生針對某一方向進(jìn)行較深入的研究。本講我們考慮描述波動現(xiàn)象的最基本偏微分方程:一維標(biāo)量波動方程的數(shù)值FDTD解,為以后二維、三維Maxwell方程的FDTD分析奠定基礎(chǔ)課程內(nèi)容取自下列的參考書和近年來相關(guān)的一些文獻(xiàn)[1]A.Taflove,ComputationalElectrodynamicsTheFinite-DifferenceTime-DomainMethod,ArtechHourse,1995.[2]高本慶,時域有限差分法,國防工業(yè)出版社,1995.[3]葛德彪,閆玉波,電磁場時域有限差分法,西電出版社,20021.1差分近似(1)一維標(biāo)量波動方程(1-1)上式的解為(1-2)
采用Taylor展開(1-3)1.1差分近似(2)于是,有(1-4)同理,有(1-5)上式稱為二階偏導(dǎo)數(shù)的二階中心差分格式。將它們代入(1-1),得(1-6)忽略高次項,便可得到求解的差分迭代公式。1.1差分近似(3)NoYesn=0在所有空間點給uin,uin-1(i=1:imax)賦初值n=n+1由(1-6)在所有空間點求uin+1(i=1:imax)結(jié)束n>nmax?圖1.1一維波動方程FDTD流程圖
1.1差分近似(4)
應(yīng)當(dāng)注意,在一般情況下(1-6)對時間或空間具有二階精度。但對于的特殊情況,根據(jù)解(1-2),可以證明
于是
所以,(1-6)中的兩個剩余項抵消,得到了精確的數(shù)值差分公式
(1-7)正因為有這樣的奇妙特性,為“魔時間步”(Magictimestep).1.2數(shù)值色散關(guān)系(1)色散關(guān)系定義為行波的波長隨頻率的變化關(guān)系。為方便起見,色散關(guān)系也常表示為行波的波數(shù)關(guān)于角頻率的變化關(guān)系??紤](1.1)的正弦行波解代入(1-1)得即
(1-8)上式便是一維標(biāo)量波動方程的色散關(guān)系。
由上式得相速度
(1-9)可見,相速與頻率無關(guān),稱為非色散。非色散意味著對于具有任意調(diào)制的包絡(luò)或脈沖形狀的波傳播任意距離后波形保持不變。進(jìn)一步由(1-8)可以得到群速關(guān)系
(1-10)這種情況下,群速也是與頻率無關(guān)。1.2數(shù)值色散關(guān)系(2)
上述過程也可用于一維標(biāo)量波動方程差分近似的數(shù)值色散分析。設(shè)在離散空間點,離散行波解為,式中,為存在于有限差分網(wǎng)格中的數(shù)值正弦波的波數(shù)。一般情況下,不同于連續(xù)物理波的波數(shù)。正是這種不同導(dǎo)致了數(shù)值相速和群速偏離了精確解。進(jìn)而導(dǎo)致了數(shù)值色散誤差。將上式代入差分方程(1-6),得
(1-11)重新組合并應(yīng)用Euler恒等式,最后得到數(shù)值色散關(guān)系為(1-12)1.3數(shù)值相速(1)類似于(1-9),定義數(shù)值相速為由(1-12)可得(1-13)可見數(shù)值相速與頻率有關(guān)。因此,由FDTD得到的數(shù)值波是色散的。取則數(shù)值相速為。相對誤差為-1.27%。如果物理波傳播了距離(100空間格)時,數(shù)值模擬波只傳播了98.73空間格,相位誤差為45.720。取則。這時數(shù)值相速的相對誤差為0.31,減少了4倍。同樣,當(dāng)物理波傳播了同樣的時(200空間格),數(shù)值模擬傳播了199.378格,相位誤差為11.1960,也減少了4倍。誤差減少了4倍反映了差分算法是二階精度的。1.3數(shù)值相速(2)情況1:非常細(xì)網(wǎng)格根據(jù),數(shù)值色散關(guān)系(1-12)變?yōu)榧矗?,最后得,于是有。所以,在非常?xì)的網(wǎng)格條件下,差分解逼近精確解。情況2:魔時間步
(1-12)變?yōu)?即。所以,??梢?,魔時間步下差分解與精確解相同。1.4數(shù)值群速定義數(shù)值相速為(1-14)情況1非常細(xì)網(wǎng)格利用正弦函數(shù)的一階Taylor展開,可得(1-15)所以,群速與相速一樣,在細(xì)網(wǎng)格條件下趨近精確解。這證明了當(dāng)空間步長和時間步長趨于零時,數(shù)值解變得精確。
情況2魔時間步將魔時間步條件和波數(shù)代入(1-14),得
(1-16)再次驗證了魔時間步下數(shù)值解等于精確解。1.5數(shù)值穩(wěn)定性(1)FDTD計算中每一步都是有誤差的,隨著時間步進(jìn),誤差會不斷積累。如果誤差的積累不會造成總誤差的增加,就成FDTD法是穩(wěn)定的,否則成為不穩(wěn)定的。數(shù)值不穩(wěn)定性會造成計算結(jié)果隨時間步進(jìn)無限增加。FDTD法是有條件穩(wěn)定的,即:時間步必須必須小于一定值以避免數(shù)值不穩(wěn)定性。本節(jié)的數(shù)值穩(wěn)定性分析方法是建立在Courant等人幾十年前提出的經(jīng)典方法基礎(chǔ)上。這種方法首先把有限差分算法分解為相互分離的時間和空間本征值問題。1.5數(shù)值穩(wěn)定性(1)時間本征值問題(1-17)差分近似,得(1-18)定義不變增長因子(1-19)1.5數(shù)值穩(wěn)定性(2)將(1-19)代入(1-18),有,于是
算法穩(wěn)定性要求。如果,則總有,于是,滿足穩(wěn)定性要求。這樣可得(1-20)這就是穩(wěn)定的數(shù)值差分解所要求的時間本征值譜。1.5數(shù)值穩(wěn)定性(3)空間本征值問題
(1-21)代入中心差分公式,得
(1-22)令,Eular公式可得因為,所以(1-23)上式給出了差分網(wǎng)格中任意空間Fourier模的本征值譜。1.5數(shù)值穩(wěn)定性(4)穩(wěn)定性為了保證任何空間模式的數(shù)值穩(wěn)定性,(1-23)給出的空間模式的本征值范圍必須完全落在(1-20)所給出的時間本征值的穩(wěn)定范圍內(nèi),于是即(1-24)可見,時間步長必須是有界的。上式稱為Courant穩(wěn)定性條件。有趣的是其上界恰好是魔時間步。1.6激勵源的設(shè)置在FDTD模擬電磁波傳播時需要設(shè)置初始條件和激勵源。最簡單的源設(shè)置方法是“硬源”,即在激勵源的位置令u滿足ui=f(n),常用的有正弦函數(shù)ui=sin(nt+)
高斯函數(shù)ui=exp[-(n-n0)2/T2]
階躍函數(shù)ui=0n<n1
=(n-n1)/(n2-n1)n1<n<n2
=1n>n2
“硬源”設(shè)置簡單,但當(dāng)反射波回到“硬源”位置時,會引起寄生反射,所以,要在這之前“關(guān)”掉源。以后會有有關(guān)源設(shè)置的更詳細(xì)討論。1.7吸收邊界條件由于計算機(jī)容量所限,計算域必須是有限的。對于理想電壁或磁壁的邊界條件的設(shè)置是直接的。但如果模擬的是“開”問題,就要設(shè)置截斷邊界。在截斷邊界上要設(shè)置吸收邊界條件,使得電磁波可以被完全吸收,模擬波無反射的通過吸收邊界。對于一維問題,采用單向波方程于是利用單向差分近似得到吸收邊界條件,詳細(xì)討論見后面章節(jié)。結(jié)論1
本講介紹了一維標(biāo)量波動方程的FDTD求解過程:利用Taylor級數(shù)展開方法獲取空間/時間導(dǎo)數(shù)的二階中心差分近似,從而得到具有二階精度的方程數(shù)值解的時間步進(jìn)迭代公式。一般情況下,數(shù)值解引入了寄生的數(shù)值色散。當(dāng)空間步長和時間步長非常小時,數(shù)值解逼近精確解。當(dāng)時間步長滿足魔時間步條件時,數(shù)值解等于精確解??臻g步長和時間步長必須滿足Courant穩(wěn)定性條件才能保證數(shù)值解的穩(wěn)定性。習(xí)題11.1利用Taylor級數(shù)展開方法分別推導(dǎo)一階導(dǎo)數(shù)的二階和四階精度中心差分近似。1.2利用數(shù)值相速和群速公式分別畫出數(shù)值相速和群速在,,和條件下關(guān)于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年內(nèi)蒙古自治區(qū)赤峰市紅山區(qū)高一上學(xué)期期末統(tǒng)考?xì)v史試題(解析版)
- 2024-2025學(xué)年山東省東營市高一下學(xué)期期末質(zhì)量監(jiān)控歷史試題(解析版)
- 2026年數(shù)據(jù)結(jié)構(gòu)與算法實現(xiàn)模擬試題庫
- 2026年旅游管理專業(yè)測試題目旅游規(guī)劃與目的地營銷
- 2026年13敘述文學(xué)基礎(chǔ)題目選粹與解答
- 2026年音樂基礎(chǔ)理論樂理和聲與作曲知識問答
- 2026年物流管理與供應(yīng)鏈優(yōu)化初級練習(xí)題
- 2026年生物醫(yī)學(xué)專業(yè)資料分析模擬試題集
- 2026年審計專業(yè)碩士研究生入學(xué)考試預(yù)測模擬題及答案解析
- 2026年國際貿(mào)易從業(yè)人員誠信經(jīng)營與合規(guī)測試題
- 安徽省阜陽市2026屆高三上學(xué)期1月期末教學(xué)質(zhì)量監(jiān)測英語試卷(含答案無聽力音頻有聽力原文)
- 2026年商洛市兒童福利院招聘備考題庫(6人)附答案詳解
- 2025年湖北能源集團(tuán)股份有限公司招聘筆試真題
- ARK+Invest+年度旗艦報告《Big+Ideas+2026》重磅發(fā)布
- 2026山西臨汾市大寧縣招聘第四次全國農(nóng)業(yè)普查辦公室人員8人備考題庫及一套完整答案詳解
- 臍靜脈置管課件
- 2025年總經(jīng)理安全生產(chǎn)責(zé)任書
- 左半結(jié)腸切除術(shù)后護(hù)理查房
- 殘疾人職業(yè)技能培訓(xùn)方案
- 幼兒冬季飲食保健知識
- 教育授權(quán)協(xié)議書范本
評論
0/150
提交評論