版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年湖南省婁底市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.
3.
A.f(x)
B.f(x)+C
C.f/(x)
D.f/(x)+C
4.
5.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
6.
7.
8.
A.
B.
C.
D.
9.設(shè)函數(shù)Y=e-x,則Y'等于().A.A.-ex
B.ex
C.-e-xQ258
D.e-x
10.A.
B.0
C.
D.
11.
A.
B.
C.
D.
12.
13.
14.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
15.
16.
17.在空間中,方程y=x2表示()A.xOy平面的曲線B.母線平行于Oy軸的拋物柱面C.母線平行于Oz軸的拋物柱面D.拋物面18.微分方程yy'=1的通解為A.A.y=x2+C
B.y2=x+C
C.1/2y2=Cx
D.1/2y2=x+C
19.設(shè)二元函數(shù)z=xy,則點(diǎn)P0(0,0)A.為z的駐點(diǎn),但不為極值點(diǎn)B.為z的駐點(diǎn),且為極大值點(diǎn)C.為z的駐點(diǎn),且為極小值點(diǎn)D.不為z的駐點(diǎn),也不為極值點(diǎn)20.若∫f(x)dx=F(x)+C,則∫f(2x)dx等于().A.A.2F(2x)+CB.F(2x)+CC.F(x)+CD.F(2x)/2+C二、填空題(20題)21.
22.
23.設(shè)y=(1+x2)arctanx,則y=________。24.設(shè)區(qū)域D由y軸,y=x,y=1所圍成,則.
25.
26.
27.y"+8y=0的特征方程是________。
28.
29.
30.過點(diǎn)M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為__________。
31.
32.
33.設(shè),則y'=________。
34.
35.設(shè)f'(1)=2.則
36.
37.
38.
39.40.三、計(jì)算題(20題)41.求曲線在點(diǎn)(1,3)處的切線方程.42.將f(x)=e-2X展開為x的冪級(jí)數(shù).
43.求微分方程y"-4y'+4y=e-2x的通解.
44.45.
46.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.47.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.48.
49.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
50.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
51.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.52.證明:
53.
54.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則55.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).57.求微分方程的通解.
58.
59.
60.四、解答題(10題)61.62.
63.
64.
65.求微分方程y"-y'-2y=0的通解。
66.
67.
68.
69.70.五、高等數(shù)學(xué)(0題)71.
是
收斂的()條件。
A.充分B.必要C.充分且必要D.無關(guān)六、解答題(0題)72.(本題滿分10分)
參考答案
1.D
2.A
3.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.
4.A解析:
5.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
6.B
7.A
8.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知
可知應(yīng)選C.
9.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知
可知應(yīng)選C.
10.A
11.D
故選D.
12.A
13.A
14.C本題考查的知識(shí)點(diǎn)為二次曲面的方程。
將x2+y2-z=0與二次曲面標(biāo)準(zhǔn)方程對(duì)照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。
15.C
16.C
17.C方程F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,故選C。
18.D
19.A
20.D本題考查的知識(shí)點(diǎn)為不定積分的第一換元積分法(湊微分法).
由題設(shè)知∫f(x)dx=F(x)+C,因此
可知應(yīng)選D.
21.1
22.極大值為8極大值為823.因?yàn)閥=(1+x2)arctanx,所以y"=2xarctanx+(1+x2)。=2xarctanx+1。24.1/2本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.其積分區(qū)域如圖1-2陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1由二重積分的幾何意義可知表示積分區(qū)域D的面積,而區(qū)域D為等腰直角三角形,面積為1/2,因此.
解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿y軸正向看,入口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對(duì)x積分,后對(duì)Y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y,作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知
25.(01)(0,1)解析:
26.y=1y=1解析:
27.r2+8r=0本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性微分方程特征方程的概念。y"+8y"=0的特征方程為r2+8r=0。
28.ln2
29.坐標(biāo)原點(diǎn)坐標(biāo)原點(diǎn)
30.
31.-3sin3x-3sin3x解析:
32.
33.
34.
35.11解析:本題考查的知識(shí)點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.
由于f'(1)=2,可知
36.
37.e-2本題考查了函數(shù)的極限的知識(shí)點(diǎn),
38.-ln|3-x|+C
39.40.本題考查的知識(shí)點(diǎn)為不定積分的換元積分法。41.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
42.
43.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
44.45.由一階線性微分方程通解公式有
46.
47.函數(shù)的定義域?yàn)?/p>
注意
48.
49.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
50.
51.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年內(nèi)容營銷與房地產(chǎn)推廣的結(jié)合
- 2026年家居用品銷售(需求分析)試題及答案
- 2025年中職廣播電視學(xué)(廣播電視基礎(chǔ))試題及答案
- 2026年扁平化管理與商務(wù)運(yùn)營的成功案例
- 2025年大學(xué)計(jì)算機(jī)應(yīng)用技術(shù)(網(wǎng)絡(luò)系統(tǒng)基礎(chǔ))試題及答案
- 2026年幼兒教育(幼兒藝術(shù)教育)試題及答案
- 2025年中職第三學(xué)年(制冷和空調(diào)設(shè)備運(yùn)行與維修)制冷設(shè)備安裝工藝試題及答案
- 2025年中職(會(huì)計(jì)電算化)報(bào)表分析綜合技能測(cè)試試題及答案
- 2026年物流調(diào)度(應(yīng)急處理)試題及答案
- 2025年中職(藥學(xué)類)藥學(xué)綜合實(shí)務(wù)綜合測(cè)試試題及答案
- 2026年榆能集團(tuán)陜西精益化工有限公司招聘?jìng)淇碱}庫完整答案詳解
- 2026廣東省環(huán)境科學(xué)研究院招聘專業(yè)技術(shù)人員16人筆試參考題庫及答案解析
- 邊坡支護(hù)安全監(jiān)理實(shí)施細(xì)則范文(3篇)
- 6.1.3化學(xué)反應(yīng)速率與反應(yīng)限度(第3課時(shí) 化學(xué)反應(yīng)的限度) 課件 高中化學(xué)新蘇教版必修第二冊(cè)(2022-2023學(xué)年)
- 北京市西城區(qū)第8中學(xué)2026屆生物高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析
- 2026年遼寧輕工職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試參考題庫帶答案解析
- 2026屆北京市清華大學(xué)附中數(shù)學(xué)高二上期末調(diào)研模擬試題含解析
- 醫(yī)院實(shí)習(xí)生安全培訓(xùn)課課件
- 四川省成都市武侯區(qū)西川中學(xué)2024-2025學(xué)年八上期末數(shù)學(xué)試卷(解析版)
- 2026年《必背60題》抖音本地生活BD經(jīng)理高頻面試題包含詳細(xì)解答
- 《成人患者醫(yī)用粘膠相關(guān)性皮膚損傷的預(yù)防及護(hù)理》團(tuán)體標(biāo)準(zhǔn)解讀2026
評(píng)論
0/150
提交評(píng)論