2022-2023學(xué)年貴州省銅仁地區(qū)普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁(yè)
2022-2023學(xué)年貴州省銅仁地區(qū)普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁(yè)
2022-2023學(xué)年貴州省銅仁地區(qū)普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁(yè)
2022-2023學(xué)年貴州省銅仁地區(qū)普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁(yè)
2022-2023學(xué)年貴州省銅仁地區(qū)普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年貴州省銅仁地區(qū)普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.設(shè)y=f(x)在[0,1]上連續(xù),且f(0)>0,f(1)<0,則下列選項(xiàng)正確的是

A.f(x)在[0,1]上可能無(wú)界

B.f(x)在[0,1]上未必有最小值

C.f(x)在[0,1]上未必有最大值

D.方程f(x)=0在(0,1)內(nèi)至少有一個(gè)實(shí)根

2.半圓板的半徑為r,重為w,如圖所示。已知板的重心C離圓心的距離為在A、B、D三點(diǎn)用三根鉛垂繩懸掛于天花板上,使板處于水平位置,則三根繩子的拉力為()。

A.F1=0.38w

B.F2=0.23w

C.F3=0.59w

D.以上計(jì)算均正確

3.設(shè)k>0,則級(jí)數(shù)為().A.A.條件收斂B.絕對(duì)收斂C.發(fā)散D.收斂性與k有關(guān)

4.

5.函數(shù)z=x2-xy+y2+9x-6y+20有

A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-1

6.設(shè)直線,ι:x/0=y/2=z/1=z/1,則直線ιA.A.過(guò)原點(diǎn)且平行于x軸B.不過(guò)原點(diǎn)但平行于x軸C.過(guò)原點(diǎn)且垂直于x軸D.不過(guò)原點(diǎn)但垂直于x軸

7.A.0B.2C.2f(-1)D.2f(1)

8.

9.

10.

11.A.0B.1C.2D.-1

12.

A.

B.1

C.2

D.+∞

13.

A.6xarctanx2

B.6xtanx2+5

C.5

D.6xcos2x

14.

15.A.(1/3)x3

B.x2

C.2xD.(1/2)x

16.

17.

18.A.0B.1C.2D.任意值

19.

A.2e-2x+C

B.

C.-2e-2x+C

D.

20.

A.0B.2C.4D.8二、填空題(20題)21.cosx為f(x)的一個(gè)原函數(shù),則f(x)=______.

22.

23.

24.

25.26.

27.f(x)=sinx,則f"(x)=_________。

28.冪級(jí)數(shù)的收斂半徑為_(kāi)_____.29.30.31.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。

32.

33.

34.35.

36.

37.

38.

39.

40.三、計(jì)算題(20題)41.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則42.43.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.44.45.

46.47.

48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.49.求微分方程的通解.

50.

51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

52.求微分方程y"-4y'+4y=e-2x的通解.

53.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

54.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

55.求曲線在點(diǎn)(1,3)處的切線方程.56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

57.

58.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).59.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

60.證明:四、解答題(10題)61.

62.設(shè)且f(x)在點(diǎn)x=0處連續(xù)b.

63.(本題滿分8分)設(shè)y=x+arctanx,求y.

64.

65.

66.

67.

68.

69.

70.五、高等數(shù)學(xué)(0題)71.zdy一ydz=0的通解_______。

六、解答題(0題)72.

參考答案

1.D

2.A

3.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.

由于為萊布尼茨級(jí)數(shù),為條件收斂.而為萊布尼茨級(jí)數(shù)乘以數(shù)-k,可知應(yīng)選A.

4.C解析:

5.D本題考查了函數(shù)的極值的知識(shí)點(diǎn)。

6.C將原點(diǎn)(0,0,0)代入直線方程成等式,可知直線過(guò)原點(diǎn)(或由直線方程x/m=y/n=z/p表示過(guò)原點(diǎn)的直線得出上述結(jié)論)。直線的方向向量為(0,2,1),又與x軸同方向的單位向量為(1,0,0),且

(0,2,1)*(1,0,0)=0,

可知所給直線與x軸垂直,因此選C。

7.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。

8.C

9.B解析:

10.B

11.C

12.C

13.C

14.B

15.C本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。

Y=x2+1,(dy)/(dx)=2x

16.B

17.A

18.B

19.D

20.A解析:21.-sinx本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.

由于cosx為f(x)的原函數(shù),可知

f(x)=(cosx)'=-sinx.

22.y=0

23.(01]

24.

25.f(x)本題考查了導(dǎo)數(shù)的原函數(shù)的知識(shí)點(diǎn)。

26.(-21)(-2,1)

27.-sinx28.0本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

所給冪級(jí)數(shù)為不缺項(xiàng)情形

因此收斂半徑為0.29.2本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.

f'(x)=(x2)'=2x,

f"(x)=(2x)'=2.30.本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問(wèn)題。

31.本題考查的知識(shí)點(diǎn)為原函數(shù)的概念。

由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)=cosx。

32.-ln2

33.F'(x)

34.

35.0.

本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)為奇函數(shù),因此

36.1/x

37.

本題考查的知識(shí)點(diǎn)為定積分的基本公式.

38.0

39.ln240.本題考查的知識(shí)點(diǎn)為無(wú)窮小的性質(zhì)。41.由等價(jià)無(wú)窮小量的定義可知

42.

43.

44.

45.

46.47.由一階線性微分方程通解公式有

48.由二重積分物理意義知

49.

50.51.函數(shù)的定義域?yàn)?/p>

注意

52.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

53.

54.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%55.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

56.

列表:

說(shuō)明

57.

58.

59.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論