版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,,,是邊的中點.為所在平面內一點且滿足,則的值為()A. B. C. D.2.下列不等式中正確的是()A.若,,則B.若,則C.若,則D.若,則3.已知,,,則,,的大小關系為()A. B. C. D.4.函數(shù)f(x)=log3(2﹣x)的定義域是()A.[2,+∞) B.(2,+∞) C.(﹣∞,2) D.(﹣∞,2]5.化簡=()A. B.C. D.6.().A. B. C. D.7.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出A. B. C. D.8.平面向量與的夾角為,,,則A. B.12 C.4 D.9.在四邊形中,,且·=0,則四邊形是()A.菱形 B.矩形 C.直角梯形 D.等腰梯形10.已知,若關于的不等式的解集中的整數(shù)恰有3個,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,正方體中,的中點為,的中點為,為棱上一點,則異面直線與所成角的大小為__________.12.如圖,在正方體中,點P是上底面(含邊界)內一動點,則三棱錐的主視圖與俯視圖的面積之比的最小值為______.13.函數(shù)的反函數(shù)的圖象經(jīng)過點,那么實數(shù)的值等于____________.14.如圖,正方形中,分別為邊上點,且,,則________.15.在三棱錐中,平面,是邊長為2的正三角形,,則三棱錐的外接球的表面積為__________.16.關于函數(shù)有下列命題:①由可得必是的整數(shù)倍;②的圖像關于點對稱,其中正確的序號是____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知等比數(shù)列的首項為,公比為,它的前項和為.(1)若,,求;(2)若,,且,求.18.某校名學生的數(shù)學期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是,,,,,.求圖中的值;根據(jù)頻率分布直方圖,估計這名學生的平均分;若這名學生的數(shù)學成績中,某些分數(shù)段的人數(shù)與英語成績相應分數(shù)段的人數(shù)之比如表所示,求英語成績在的人數(shù).分數(shù)段:51:21:119.記Sn為等差數(shù)列an的前n項和,已知(1)求an(2)求Sn,并求S20.如圖,在四棱錐中,底面為正方形,平面,,與交于點,,分別為,的中點.(Ⅰ)求證:平面平面;(Ⅱ)求證:∥平面;(Ⅲ)求證:平面.21.已知等差數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)已知數(shù)列的前項和,,求數(shù)列,的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據(jù)平面向量基本定理可知,將所求數(shù)量積化為;由模長的等量關系可知和為等腰三角形,根據(jù)三線合一的特點可將和化為和,代入可求得結果.【詳解】為中點和為等腰三角形,同理可得:本題正確選項:【點睛】本題考查向量數(shù)量積的求解問題,關鍵是能夠利用模長的等量關系得到等腰三角形,從而將含夾角的運算轉化為已知模長的向量的運算.2、D【解析】
根據(jù)不等式的性質逐一判斷即可得解.【詳解】解:對于選項A,若,,不妨取,則,即A錯誤;對于選項B,若,當時,則,即B錯誤;對于選項C,若,不妨取,則,即C錯誤;對于選項D,若,則,即,,即D正確,故選:D.【點睛】本題考查了不等式的性質,屬基礎題.3、D【解析】
利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調性直接求解.【詳解】解:因為,,所以,,的大小關系為.故選:D.【點睛】本題考查三個數(shù)的大小比較,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調性等基礎知識,屬于基礎題.4、C【解析】試題分析:利用對數(shù)函數(shù)的性質求解.解:函數(shù)f(x)=log3(1﹣x)的定義域滿足:1﹣x>0,解得x<1.∴函數(shù)f(x)=log3(1﹣x)的定義域是(﹣∞,1).故選C.考點:對數(shù)函數(shù)的定義域.5、D【解析】
根據(jù)向量的加法與減法的運算法則,即可求解,得到答案.【詳解】由題意,根據(jù)向量的運算法則,可得=++==,故選D.【點睛】本題主要考查了向量的加法與減法的運算法則,其中解答中熟記向量的加法與減法的運算法則,準確化簡、運算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.6、D【解析】
運用誘導公式進行化簡,最后逆用兩角和的正弦公式求值即可.【詳解】,故本題選D.【點睛】本題考查了正弦的誘導公式,考查了逆用兩角和的正弦公式,考查了特殊角的正弦值.7、B【解析】
首先確定流程圖所實現(xiàn)的功能,然后利用裂項求和的方法即可確定輸出的數(shù)值.【詳解】由流程圖可知,程序輸出的值為:,即.故選B.【點睛】本題主要考查流程圖功能的識別,裂項求和的方法等知識,意在考查學生的轉化能力和計算求解能力.8、D【解析】
根據(jù),利用向量數(shù)量積的定義和運算律即可求得結果.【詳解】由題意得:,本題正確選項:【點睛】本題考查向量模長的求解,關鍵是能夠通過平方運算將問題轉化為平面向量數(shù)量積的求解問題,屬于??碱}型.9、A【解析】
由可得四邊形為平行四邊形,由·=0得四邊形的對角線垂直,故可得四邊形為菱形.【詳解】∵,∴與平行且相等,∴四邊形為平行四邊形.又,∴,即平行四邊形的對角線互相垂直,∴平行四邊形為菱形.故選A.【點睛】本題考查向量相等和向量數(shù)量積的的應用,解題的關鍵是正確理解有關的概念,屬于基礎題.10、A【解析】
將不等式化為,可知滿足不等式,不滿足不等式,由此可確定個整數(shù)解為;當和時,解不等式可知不滿足題意;當時,解出不等式的解集,要保證整數(shù)解為,則需,解不等式組求得結果.【詳解】由得:當時,成立必為不等式的一個整數(shù)解當時,不成立不是不等式的整數(shù)解個整數(shù)解分別為:當時,,不滿足題意當時,解不等式得:或不等式不可能只有個整數(shù)解,不滿足題意當時,,解得:,即的取值范圍為:本題正確選項:【點睛】本題考查根據(jù)不等式整數(shù)解的個數(shù)求解參數(shù)范圍問題,關鍵是能夠利用特殊值確定整數(shù)解的具體取值,從而解不等式,根據(jù)整數(shù)解的取值來確定解集的上下限,構造不等式組求得結果.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)題意得到直線MP運動起來構成平面,可得到面,進而得到結果.【詳解】取的中點O連接,,根據(jù)題意可得到直線MP是一條動直線,當點P變動時直線就構成了平面,因為MO均為線段的中點,故得到,四邊形為平行四邊形,面,故得到,又面,進而得到.故夾角為.故答案為.【點睛】這個題目考查的是異面直線的夾角的求法;常見方法有:將異面直線平移到同一平面內,轉化為平面角的問題;或者證明線面垂直進而得到面面垂直,這種方法適用于異面直線垂直的時候.12、【解析】
設正方體的棱長為,求出三棱錐的主視圖面積為定值,當與重合時,三棱錐的俯視圖面積最大,此時主視圖與俯視圖面積比值最小.【詳解】設正方體的棱長為,則三棱錐的主視圖是底面邊為,高為的三角形,其面積為,當與重合時,三棱錐的俯視圖為正方形,其面積最大,最大值為,所以,三棱錐的主視圖與俯視圖面積比的最小值為.故答案為:.【點睛】本題考查了空間幾何體的三視圖面積計算應用問題,屬于基礎題.13、【解析】
根據(jù)原函數(shù)與其反函數(shù)的圖象關于直線對稱,可得函數(shù)的圖象經(jīng)過點,由此列等式可得結果.【詳解】因為函數(shù)的反函數(shù)的圖象經(jīng)過點,所以函數(shù)的圖象經(jīng)過點,所以,即,解得.故答案為:【點睛】本題考查了原函數(shù)與其反函數(shù)的圖象的對稱性,屬于基礎題.14、(或)【解析】
先設,根據(jù)題意得到,再由兩角和的正切公式求出,得到,進而可得出結果.【詳解】設,則所以,所以,因此.故答案為【點睛】本題主要考查三角恒等變換的應用,熟記公式即可,屬于常考題型.15、【解析】
設三棱錐的外接球半徑為,利用正弦定理求出的外接圓半徑,再利用公式可計算出外接球半徑,最后利用球體的表面積公式可計算出結果.【詳解】由正弦定理可得,的外接圓直徑為,,設三棱錐的外接球半徑為,平面,,因此,三棱錐的外接球表面積為,故答案為.【點睛】本題考查多面體的外接球,考查球體表面積的計算,在求解直棱柱后直棱錐的外接球,若底面外接圓半徑為,高為,可利用公式得出外接球的半徑,解題時要熟悉這些結論的應用.16、②【解析】
對①,可令求出的通式,再進行判斷;對②,將代入檢驗是否為0即可【詳解】對①,令得,可令,,①錯;對②,當時,,②對故正確序號為:②故答案為②【點睛】本題考查三角函數(shù)的基本性質,屬于基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)題意建立和的方程組,求出這兩個量,然后利用等比數(shù)列的通項公式可求出;(2)分、、三種情況討論,然后利用等比數(shù)列的求和公式求出和,即可計算出.【詳解】(1)若,則,得,則,這與矛盾,則,所以,,解得,因此,;(2)當時,則,所以,;當時,,,則,此時;當時,則.因此,.【點睛】本題考查等比數(shù)列通項公式的計算,同時也考查了與等比數(shù)列前項和相關的數(shù)列極限的計算,解題時要注意對公比的取值進行分類討論,考查運算求解能力,屬于中等題.18、(1)(2)平均數(shù)為(3)人【解析】
(1)根據(jù)面積之和為1列等式解得.(2)頻率分布直方圖中每一個小矩形的面積乘以底邊中點的橫坐標之和即為平均數(shù),(3)先計算出各分數(shù)段上的成績,再根據(jù)比值計算出相應分數(shù)段上的英語成績人數(shù)相加即可.【詳解】解:由,解得.頻率分布直方圖中每一個小矩形的面積乘以底邊中點的橫坐標之和即為平均數(shù),即估計平均數(shù)為.由頻率分布直方圖可求出這名學生的數(shù)學成績在,,的分別有人,人,人,按照表中給的比例,則英語成績在,,的分別有人,人,人,所以英語成績在的有人.【點睛】本題考查了頻率分布直方圖,屬中檔題.19、(1)an=2n-12;(2)Sn【解析】
(1)設等差數(shù)列an的公差為d,根據(jù)題意求出d(2)根據(jù)等差數(shù)列的前n項和公式先求出Sn,再由an=2n-12≥0【詳解】(1)因為數(shù)列an為等差數(shù)列,設公差為d由a3=-6,a6=0所以an(2)因為Sn為等差數(shù)列an的前所以Sn由an=2n-12≥0得所以當n=5或n=6時,【點睛】本題主要考查等差數(shù)列,熟記通項公式以及前n項和公式即可,屬于??碱}型.20、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】
(I)通過證明平面來證得平面平面.(II)取中點,連接,通過證明四邊形為平行四邊形,證得,由此證得∥平面.(III)通過證明平面證得,通過計算證明證得,由此證得平面.【詳解】證明:(Ⅰ)因為平面,所以.因為,,所以平面.因為平面,所以平面平面.(Ⅱ)取中點,連結,因為為的中點所以,且.因為為的中點,底面為正方形,所以,且.所以,且.所以四邊形為平行四邊形.所以.因為平面且平面,所以平面.(Ⅲ)在正方形中,,因為平面,所以.因為,所以平面.所以.在△中,設交于.因為,且分別為的中點,所以.所以.設,由已知,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海市嘉定區(qū)嘉一中2026屆高二上生物期末監(jiān)測試題含解析
- 校慶活動策劃方案國慶(3篇)
- 獸藥銷售培訓課件模板
- 科技項目評審現(xiàn)場管理制度(3篇)
- 獸藥監(jiān)管培訓課件班講話
- 進口核酸檢測準入管理制度(3篇)
- 餐飲企業(yè)提案管理制度(3篇)
- 《GA 1373-2017警帽 禮儀卷檐帽》專題研究報告深度
- 《GA 735-2007警服材料 針織羅紋布》專題研究報告
- 2026年及未來5年市場數(shù)據(jù)中國供應鏈物流行業(yè)市場全景監(jiān)測及投資戰(zhàn)略咨詢報告
- 藥品追溯碼管理制度
- 腳手架國際化標準下的發(fā)展趨勢
- 購銷合同范本(塘渣)8篇
- 屋面光伏設計合同協(xié)議
- 生鮮業(yè)務采購合同協(xié)議
- GB/T 4340.2-2025金屬材料維氏硬度試驗第2部分:硬度計的檢驗與校準
- 銷售合同評審管理制度
- 資產(chǎn)評估員工管理制度
- 泳池突發(fā)安全事故應急預案
- 湖北省武漢市漢陽區(qū)2024-2025學年上學期元調九年級物理試題(含標答)
- DB37-T 5316-2025《外墻外保溫工程質量鑒定技術規(guī)程》
評論
0/150
提交評論