廣東省廣州市實驗中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第1頁
廣東省廣州市實驗中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第2頁
廣東省廣州市實驗中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第3頁
廣東省廣州市實驗中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第4頁
廣東省廣州市實驗中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等差數(shù)列的公差,前項和為,則對正整數(shù),下列四個結(jié)論中:(1)成等差數(shù)列,也可能成等比數(shù)列;(2)成等差數(shù)列,但不可能成等比數(shù)列;(3)可能成等比數(shù)列,但不可能成等差數(shù)列;(4)不可能成等比數(shù)列,也不叫能成等差數(shù)列.正確的是()A.(1)(3) B.(1)(4) C.(2)(3) D.(2)(4)2.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.3.已知函數(shù),此函數(shù)的圖象如圖所示,則點的坐標(biāo)是()A. B. C. D.4.已知正項數(shù)列,若點在函數(shù)的圖像上,則()A.12 B.13 C.14 D.165.若向量的夾角為,且,,則向量與向量的夾角為()A. B. C. D.6.在中,已知,.若最長邊為,則最短邊長為()A. B. C. D.7.已知數(shù)列滿足,且,其前n項之和為,則滿足不等式的最小整數(shù)n是()A.5 B.6 C.7 D.88.已知向量,滿足,和的夾角為,則()A. B. C. D.19.已知正數(shù)滿足,則的最小值是()A.9 B.10 C.11 D.1210.已知在中,,那么的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11._______________.12.設(shè)向量滿足,,,.若,則的最大值是________.13.設(shè)數(shù)列的前項和,若,,則的通項公式為_____.14.若,且,則=_______.15.若一個圓錐的高和底面直徑相等且它的體積為,則此圓錐的側(cè)面積為______.16.已知直線與圓交于兩點,若,則____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(1)求;(2)求的值.18.在銳角中,角,,所對的邊分別為,,.已知,.(1)求的值;(2)若,求的面積.19.為了加強(qiáng)“平安校園”建設(shè),有效遏制涉校案件的發(fā)生,保障師生安全,某校決定在學(xué)校門口利用一側(cè)原有墻體,建造一間墻高為3米,底面為24平方米,且背面靠墻的長方體形狀的校園警務(wù)室.由于此警務(wù)室的后背靠墻,無需建造費(fèi)用,甲工程隊給出的報價為:屋子前面新建墻體的報價為每平方米400元,左右兩面新建墻體報價為每平方米300元,屋頂和地面以及其他報價共計14400元.設(shè)屋子的左右兩面墻的長度均為x米(3≤x≤6).(Ⅰ)當(dāng)左右兩面墻的長度為多少時,甲工程隊報價最低?并求出最低報價.(Ⅱ)現(xiàn)有乙工程隊也要參與此警務(wù)室的建造競標(biāo),其給出的整體報價為1800a(1+x)x元(a>0),若無論左右兩面墻的長度為多少米,乙工程隊都能競標(biāo)成功,試求a20.已知的三個內(nèi)角、、的對邊分別是、、,的面積,(Ⅰ)求角;(Ⅱ)若中,邊上的高,求的值.21.在中,三個內(nèi)角所對的邊分別為,滿足.(1)求角的大?。唬?)若,求,的值.(其中)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】試題分析:根據(jù)等差數(shù)列的性質(zhì),,,,因此(1)錯誤,(2)正確,由上顯然有,,,,故(3)錯誤,(4)正確.即填(2)(4).考點:等差數(shù)列的前項和,等差數(shù)列與等比數(shù)列的定義.2、B【解析】

先根據(jù)斜二測畫法的性質(zhì)求出原圖形,再分析繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積即可.【詳解】根據(jù)斜二測畫法的性質(zhì)可知,原是以為底,高為的等腰三角形.又.故為邊長為2的正三角形.則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體可看做兩個以底面半徑為,高為的圓錐組合而成.故表面積為.故選:B【點睛】本題主要考查了斜二測畫法還原幾何圖形與旋轉(zhuǎn)體的側(cè)面積求解.需要根據(jù)題意判斷出旋轉(zhuǎn)后的幾何體形狀再用公式求解.屬于中檔題.3、B【解析】

根據(jù)確定的兩個相鄰零點的值可以求出最小正周期,進(jìn)而利用正弦型最小正周期公式求出的值,最后把其中的一個零點代入函數(shù)的解析式中,求出的值即可.【詳解】設(shè)函數(shù)的最小正周期為,因此有,當(dāng)時,,因此的坐標(biāo)為:.故選:B【點睛】本題考查了通過三角函數(shù)的圖象求參數(shù)問題,屬于基礎(chǔ)題.4、A【解析】

由已知點在函數(shù)圖象上求出通項公式,得,由對數(shù)的定義計算.【詳解】由題意,,∴,∴.故選:A.【點睛】本題考查數(shù)列的通項公式,考查對數(shù)的運(yùn)算.屬于基礎(chǔ)題.5、B【解析】

結(jié)合數(shù)量積公式可求得、、的值,代入向量夾角公式即可求解.【詳解】設(shè)向量與的夾角為,因為的夾角為,且,,所以,,所以,又因為所以,故選B【點睛】本題考查向量的數(shù)量積公式,向量模、夾角的求法,考查化簡計算的能力,屬基礎(chǔ)題.6、A【解析】試題分析:由,,解得,同理,由,,解得,在三角形中,,由此可得,為最長邊,為最短邊,由正弦定理:,解得.考點:正弦定理.7、C【解析】

首先分析題目已知3an+1+an=4(n∈N*)且a1=9,其前n項和為Sn,求滿足不等式|Sn﹣n﹣6|<的最小整數(shù)n.故可以考慮把等式3an+1+an=4變形得到,然后根據(jù)數(shù)列bn=an﹣1為等比數(shù)列,求出Sn代入絕對值不等式求解即可得到答案.【詳解】對3an+1+an=4變形得:3(an+1﹣1)=﹣(an﹣1)即:故可以分析得到數(shù)列bn=an﹣1為首項為8公比為的等比數(shù)列.所以bn=an﹣1=8×an=8×+1所以|Sn﹣n﹣6|=解得最小的正整數(shù)n=7故選C.【點睛】此題主要考查不等式的求解問題,其中涉及到可化為等比數(shù)列的數(shù)列的求和問題,屬于不等式與數(shù)列的綜合性問題,判斷出數(shù)列an﹣1為等比數(shù)列是題目的關(guān)鍵,有一定的技巧性屬于中檔題目.8、B【解析】

由平面向量的數(shù)量積公式,即可得到本題答案.【詳解】由題意可得.故選:B.【點睛】本題主要考查平面向量的數(shù)量積公式,屬基礎(chǔ)題.9、A【解析】

利用基本不等式可得,然后解出即可.【詳解】解:正數(shù),滿足,∴,,,當(dāng)且僅當(dāng)時取等號,的最小值為9,故選:A.【點睛】本題主要考查基本不等式的應(yīng)用和一元二次不等式的解法,屬于基礎(chǔ)題.10、A【解析】

,不妨設(shè),,則,選A.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】

利用裂項求和法將化簡為,再求極限即可.【詳解】令...故答案為:【點睛】本題主要考查數(shù)列求和中的列項求和,同時考查了極限的求法,屬于中檔題.12、【解析】

令,計算出模的最大值即可,當(dāng)與同向時的模最大.【詳解】令,則,因為,所以當(dāng),,因此當(dāng)與同向時的模最大,【點睛】本題主要考查了向量模的計算,以及二次函數(shù)在給定區(qū)間上的最值.整體換元的思想,屬于較的難題,在解二次函數(shù)的問題時往往結(jié)合圖像、開口、對稱軸等進(jìn)行分析.13、【解析】

已知求,通常分進(jìn)行求解即可。【詳解】時,,化為:.時,,解得.不滿足上式.∴數(shù)列在時成等比數(shù)列.∴時,.∴.故答案為:.【點睛】本題主要考查了數(shù)列通項式的求法:求數(shù)列通項式常用的方法有累加法、定義法、配湊法、累乘法等。14、【解析】

由的值及,可得的值,計算可得的值.【詳解】解:由,且,由,可得,故,故答案為:.【點睛】本題主要考查了同角三角函數(shù)的基本關(guān)系,熟練掌握其基本關(guān)系是解題的關(guān)鍵.15、【解析】

先由圓錐的體積公式求出圓錐的底面半徑,再結(jié)合圓錐的側(cè)面積公式求解即可.【詳解】解:設(shè)圓錐的底面半徑為,則圓錐的高為,母線長為,由圓錐的體積為,則,即,則此圓錐的側(cè)面積為.故答案為:.【點睛】本題考查了圓錐的體積公式,重點考查了圓錐的側(cè)面積公式,屬基礎(chǔ)題.16、【解析】

根據(jù)點到直線距離公式與圓的垂徑定理求解.【詳解】圓的圓心為,半徑為,圓心到直線的距離:,由得,解得.【點睛】本題考查直線與圓的應(yīng)用.此題也可聯(lián)立圓與直線方程,消元后用弦長公式求解.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)根據(jù)三角函數(shù)的基本關(guān)系式,可得,再結(jié)合正切的倍角公式,即可求解;(2)由(1)知,結(jié)合三角函數(shù)的基本關(guān)系式,即可求解,得到答案.【詳解】(1)由,根據(jù)三角函數(shù)的基本關(guān)系式,可得,所以.(2)由(1)知,又由.【點睛】本題主要考查了三角函數(shù)的基本關(guān)系式和正切的倍角公式的化簡求值,其中解答中熟記三角函數(shù)的基本關(guān)系式和三角恒等變換的公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.18、(1)2;(2)3.【解析】

(1)利用正弦定理可得,消元后可得關(guān)于的三角方程,從該方程可得的值.(2)利用同角的三角函數(shù)的基本關(guān)系式結(jié)合(1)中的結(jié)果可得,再根據(jù)題設(shè)條件得到后再利用正弦定理可求的值,從而得到所求的面積.【詳解】(1)在由正弦定理得,①,因為,所以,又因為,所以,整理得到,故.(2)在銳角中,因為,所以,將代入①得.在由正弦定理得,所以.【點睛】在解三角形中,如果題設(shè)條件是邊角的混合關(guān)系,那么我們可以利用正弦定理或余弦定理把這種混合關(guān)系式轉(zhuǎn)化為邊的關(guān)系式或角的關(guān)系式.另外,三角形中共有七個幾何量(三邊三角以及外接圓的半徑),一般地,知道兩角及一邊,用正弦定理.另外,如果知道兩個角的三角函數(shù)值,則必定可以求第三角的三角函數(shù)值,此時涉及到的公式有同角的三角函數(shù)的基本關(guān)系式和兩角和差的三角公式、倍角公式等.19、(Ⅰ)4米時,28800元;(Ⅱ)0<a<12.25.【解析】

(Ⅰ)設(shè)甲工程隊的總造價為y元,先求出函數(shù)的解析式,再利用基本不等式求函數(shù)的最值得解;(Ⅱ)由題意可得,1800(x+16x)+14400>從而(x+4)2【詳解】(Ⅰ)設(shè)甲工程隊的總造價為y元,則y=3(300×2x+400×1800(x+16當(dāng)且僅當(dāng)x=16x,即即當(dāng)左右兩側(cè)墻的長度為4米時,甲工程隊的報價最低為28800元.(Ⅱ)由題意可得,1800(x+16x)+14400>即(x+4)2x>令x+1=t,(x+4)又y=t+9t+6在t∈[4,7]所以0<a<12.25.【點睛】本題主要考查基本不等式的應(yīng)用,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由面積公式推出,代入所給等式可得,求出角C的余弦值從而求得角C;(Ⅱ)首先由求出邊c,再由面積公式代入相應(yīng)值求出邊b,利用余弦定理即可求出邊a.【詳解】(Ⅰ)由得①于是,即∴又,所以(Ⅱ),由得,將代入中得,解得.【點睛】本題考查余弦定理解三角形,三角形面積公式,屬于基礎(chǔ)題.21、(1);(2)4,6【解析】

(1)已知等式利用正弦定理化簡,整理后利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式化簡,求出的值,即可確定出的度數(shù);(2)根據(jù)平面向量數(shù)量積的運(yùn)算法則計算得到一個等式,記作①,把的度數(shù)代入求出的值,記作②,然后利用余弦定理表示出,把及的值代入求出的值,利用完全平方公式表示出,把相應(yīng)的值代入,開方求出的值,由②③可知與為一個一元二次方程的兩個解,求出方程的解,根據(jù)大于,可得出,的值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論