山東省萊陽(yáng)市一中2023屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
山東省萊陽(yáng)市一中2023屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
山東省萊陽(yáng)市一中2023屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
山東省萊陽(yáng)市一中2023屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
山東省萊陽(yáng)市一中2023屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)是虛數(shù)單位,若復(fù)數(shù),則()A. B. C. D.2.閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學(xué)生李華計(jì)劃在高一年級(jí)每周星期一至星期五的每天閱讀半個(gè)小時(shí)中國(guó)四大名著:《紅樓夢(mèng)》、《三國(guó)演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計(jì)劃共有()A.120種 B.240種 C.480種 D.600種3.已知直線過(guò)圓的圓心,則的最小值為()A.1 B.2 C.3 D.44.已知函數(shù)的零點(diǎn)為m,若存在實(shí)數(shù)n使且,則實(shí)數(shù)a的取值范圍是()A. B. C. D.5.某圓柱的高為2,底面周長(zhǎng)為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對(duì)應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對(duì)應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長(zhǎng)度為()A. B. C. D.26.若,滿足約束條件,則的最大值是()A. B. C.13 D.7.已知函數(shù),若不等式對(duì)任意的恒成立,則實(shí)數(shù)k的取值范圍是()A. B. C. D.8.如圖,網(wǎng)格紙是由邊長(zhǎng)為1的小正方形構(gòu)成,若粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.9.?dāng)?shù)列{an},滿足對(duì)任意的n∈N+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數(shù)列{an}的前100項(xiàng)的和S100=()A.132 B.299 C.68 D.9910.如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是()A.從2000年至2016年,該地區(qū)環(huán)境基礎(chǔ)設(shè)施投資額逐年增加;B.2011年該地區(qū)環(huán)境基礎(chǔ)設(shè)施的投資額比2000年至2004年的投資總額還多;C.2012年該地區(qū)基礎(chǔ)設(shè)施的投資額比2004年的投資額翻了兩番;D.為了預(yù)測(cè)該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量t的值依次為)建立了投資額y與時(shí)間變量t的線性回歸模型,根據(jù)該模型預(yù)測(cè)該地區(qū)2019的環(huán)境基礎(chǔ)設(shè)施投資額為256.5億元.11.某工廠一年中各月份的收入、支出情況的統(tǒng)計(jì)如圖所示,下列說(shuō)法中錯(cuò)誤的是().A.收入最高值與收入最低值的比是B.結(jié)余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個(gè)月的平均收入為萬(wàn)元12.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.3二、填空題:本題共4小題,每小題5分,共20分。13.點(diǎn)是曲線()圖象上的一個(gè)定點(diǎn),過(guò)點(diǎn)的切線方程為,則實(shí)數(shù)k的值為_(kāi)_____.14.曲線在點(diǎn)處的切線方程是__________.15.設(shè)命題:,,則:__________.16.設(shè)實(shí)數(shù),滿足,則的最大值是______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)若,求不等式的解集;(2)已知,若對(duì)于任意恒成立,求的取值范圍.18.(12分)已知,函數(shù).(Ⅰ)若在區(qū)間上單調(diào)遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數(shù)據(jù):)19.(12分)已知,函數(shù).(1)若函數(shù)在上為減函數(shù),求實(shí)數(shù)的取值范圍;(2)求證:對(duì)上的任意兩個(gè)實(shí)數(shù),,總有成立.20.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,建立極坐標(biāo)系.(1)設(shè)直線l的極坐標(biāo)方程為,若直線l與曲線C交于兩點(diǎn)A.B,求AB的長(zhǎng);(2)設(shè)M、N是曲線C上的兩點(diǎn),若,求面積的最大值.21.(12分)已知.(1)當(dāng)時(shí),求不等式的解集;(2)若時(shí)不等式成立,求的取值范圍.22.(10分)如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點(diǎn)A在平面BCC1B1上的投影為棱BB1的中點(diǎn)E.(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

結(jié)合復(fù)數(shù)的除法運(yùn)算和模長(zhǎng)公式求解即可【詳解】∵復(fù)數(shù),∴,,則,故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法、模長(zhǎng)、平方運(yùn)算,屬于基礎(chǔ)題2、B【解析】

首先將五天進(jìn)行分組,再對(duì)名著進(jìn)行分配,根據(jù)分步乘法計(jì)數(shù)原理求得結(jié)果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計(jì)數(shù)原理可得不同的閱讀計(jì)劃共有:種本題正確選項(xiàng):【點(diǎn)睛】本題考查排列組合中的分組分配問(wèn)題,涉及到分步乘法計(jì)數(shù)原理的應(yīng)用,易錯(cuò)點(diǎn)是忽略分組中涉及到的平均分組問(wèn)題.3、D【解析】

圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開(kāi)計(jì)算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時(shí)取等號(hào),故選:.【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時(shí)考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.4、D【解析】

易知單調(diào)遞增,由可得唯一零點(diǎn),通過(guò)已知可求得,則問(wèn)題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡(jiǎn)可得,借助對(duì)號(hào)函數(shù)即可解得實(shí)數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點(diǎn)為,所以,∴,問(wèn)題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對(duì)勾函數(shù)”可知函數(shù)在區(qū)間的值域?yàn)?,?故選D.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問(wèn)題,考查了方程有解問(wèn)題,分離參數(shù)法及構(gòu)造函數(shù)法的應(yīng)用,考查了利用“對(duì)勾函數(shù)”求參數(shù)取值范圍問(wèn)題,難度較難.5、B【解析】

首先根據(jù)題中所給的三視圖,得到點(diǎn)M和點(diǎn)N在圓柱上所處的位置,將圓柱的側(cè)面展開(kāi)圖平鋪,點(diǎn)M、N在其四分之一的矩形的對(duì)角線的端點(diǎn)處,根據(jù)平面上兩點(diǎn)間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開(kāi)圖平鋪,可以確定點(diǎn)M和點(diǎn)N分別在以圓柱的高為長(zhǎng)方形的寬,圓柱底面圓周長(zhǎng)的四分之一為長(zhǎng)的長(zhǎng)方形的對(duì)角線的端點(diǎn)處,所以所求的最短路徑的長(zhǎng)度為,故選B.點(diǎn)睛:該題考查的是有關(guān)幾何體的表面上兩點(diǎn)之間的最短距離的求解問(wèn)題,在解題的過(guò)程中,需要明確兩個(gè)點(diǎn)在幾何體上所處的位置,再利用平面上兩點(diǎn)間直線段最短,所以處理方法就是將面切開(kāi)平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.6、C【解析】

由已知畫出可行域,利用目標(biāo)函數(shù)的幾何意義求最大值.【詳解】解:表示可行域內(nèi)的點(diǎn)到坐標(biāo)原點(diǎn)的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點(diǎn)到坐標(biāo)原點(diǎn)的距離最大,即.故選:.【點(diǎn)睛】本題考查線性規(guī)劃問(wèn)題,考查數(shù)形結(jié)合的數(shù)學(xué)思想以及運(yùn)算求解能力,屬于基礎(chǔ)題.7、A【解析】

先求出函數(shù)在處的切線方程,在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】當(dāng)時(shí),,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點(diǎn)坐標(biāo)為.在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結(jié)合思想可知:不等式對(duì)任意的恒成立,則實(shí)數(shù)k的取值范圍是.故選:A【點(diǎn)睛】本題考查了利用數(shù)形結(jié)合思想解決不等式恒成立問(wèn)題,考查了導(dǎo)數(shù)的應(yīng)用,屬于中檔題.8、C【解析】

根據(jù)三視圖還原為幾何體,結(jié)合組合體的結(jié)構(gòu)特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個(gè)圓柱和一個(gè)長(zhǎng)方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長(zhǎng)方體的底面四邊形相鄰邊長(zhǎng)分別為1,2,高為4,所以該幾何體的表面積,故選C.【點(diǎn)睛】本題主要考查三視圖的識(shí)別,利用三視圖還原成幾何體是求解關(guān)鍵,側(cè)重考查直觀想象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).9、B【解析】

由為定值,可得,則是以3為周期的數(shù)列,求出,即求.【詳解】對(duì)任意的,均有為定值,,故,是以3為周期的數(shù)列,故,.故選:.【點(diǎn)睛】本題考查周期數(shù)列求和,屬于中檔題.10、D【解析】

根據(jù)圖像所給的數(shù)據(jù),對(duì)四個(gè)選項(xiàng)逐一進(jìn)行分析排除,由此得到表述不正確的選項(xiàng).【詳解】對(duì)于選項(xiàng),由圖像可知,投資額逐年增加是正確的.對(duì)于選項(xiàng),投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對(duì)于選項(xiàng),令代入回歸直線方程得億元,故選項(xiàng)描述不正確.所以本題選D.【點(diǎn)睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進(jìn)行預(yù)測(cè)的方法,屬于基礎(chǔ)題.11、D【解析】由圖可知,收入最高值為萬(wàn)元,收入最低值為萬(wàn)元,其比是,故項(xiàng)正確;結(jié)余最高為月份,為,故項(xiàng)正確;至月份的收入的變化率為至月份的收入的變化率相同,故項(xiàng)正確;前個(gè)月的平均收入為萬(wàn)元,故項(xiàng)錯(cuò)誤.綜上,故選.12、C【解析】

先根據(jù)奇偶性,求出的解析式,令,即可求出?!驹斀狻恳?yàn)?、分別是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡(jiǎn)得,即令,所以,故選C?!军c(diǎn)睛】本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

求出導(dǎo)函數(shù),由切線斜率為4即導(dǎo)數(shù)為4求出切點(diǎn)橫坐標(biāo),再由切線方程得縱坐標(biāo)后可求得.【詳解】設(shè),由題意,∴,,,即,∴,.故答案為:1.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,函數(shù)圖象某點(diǎn)處的切線的斜率就是該點(diǎn)處導(dǎo)數(shù)值.本題屬于基礎(chǔ)題.14、【解析】

利用導(dǎo)數(shù)的幾何意義計(jì)算即可.【詳解】由已知,,所以,又,所以切線方程為,即.故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本計(jì)算能力,要注意在某點(diǎn)處的切線與過(guò)某點(diǎn)的切線的區(qū)別,是一道容易題.15、,【解析】

存在符號(hào)改任意符號(hào),結(jié)論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點(diǎn)睛】本題考查全(特)稱命題.對(duì)全(特)稱命題進(jìn)行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結(jié)論:對(duì)于一般命題的否定只需直接否定結(jié)論即可.16、1【解析】

根據(jù)目標(biāo)函數(shù)的解析式形式,分析目標(biāo)函數(shù)的幾何意義,然后判斷求出目標(biāo)函數(shù)取得最優(yōu)解的點(diǎn)的坐標(biāo),即可求解.【詳解】作出實(shí)數(shù),滿足表示的平面區(qū)域,如圖所示:由可得,則表示直線在軸上的截距,截距越小,越大.由可得,此時(shí)最大為1,故答案為:1.【點(diǎn)睛】本題主要考查線性規(guī)劃知識(shí)的運(yùn)用,考查學(xué)生的計(jì)算能力,考查數(shù)形結(jié)合的數(shù)學(xué)思想.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)或;(2).【解析】

(1)時(shí),分類討論,去掉絕對(duì)值,分類討論解不等式.(2)時(shí),分類討論去絕對(duì)值,得到解析式,由函數(shù)的單調(diào)性可得的最小值,通過(guò)恒成立問(wèn)題,得到關(guān)于的不等式,得到的取值范圍.【詳解】(1)因?yàn)?,所以,所以不等式等價(jià)于或或,解得或.所以不等式的解集為或.(2)因?yàn)?,所以,根?jù)函數(shù)的單調(diào)性可知函數(shù)的最小值為,因?yàn)楹愠闪?,所以,解?所以實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查分類討論去絕對(duì)值,分段函數(shù)求最值,不等式恒成立問(wèn)題,屬于中檔題.18、(Ⅰ);(Ⅱ)3.【解析】

(Ⅰ)先求導(dǎo),得,已知導(dǎo)函數(shù)單調(diào)遞增,又在區(qū)間上單調(diào)遞增,故,令,求得,討論得,而,故,進(jìn)而得解;(Ⅱ)可通過(guò)必要性探路,當(dāng)時(shí),由知,又由于,則,當(dāng),,結(jié)合零點(diǎn)存在定理可判斷必存在使得,得,,化簡(jiǎn)得,再由二次函數(shù)性質(zhì)即可求證;【詳解】(Ⅰ)的定義域?yàn)?易知單調(diào)遞增,由題意有.令,則.令得.所以當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以,而又有,因此,所以.(Ⅱ)由知,又由于,則.下面證明符合條件.若.所以.易知單調(diào)遞增,而,,因此必存在使得,即.且當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;則.綜上,的最大值為3.【點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算,利用導(dǎo)數(shù)研究函數(shù)的增減性和最值,屬于中檔題19、(1)(2)見(jiàn)解析【解析】

(1)求出函數(shù)的導(dǎo)函數(shù),依題意可得在上恒成立,參變分離得在上恒成立.設(shè),求出即可得到參數(shù)的取值范圍;(2)不妨設(shè),,,利用導(dǎo)數(shù)說(shuō)明函數(shù)在上是減函數(shù),即可得證;【詳解】解:(1)∵∴,且函數(shù)在上為減函數(shù),即在上恒成立,∴在上恒成立.設(shè),∵函數(shù)在上單調(diào)遞增,∴,∴,∴實(shí)數(shù)的取值范圍為.(2)不妨設(shè),,,則,∴.∵,∴,又,令,∴,∴在上為減函數(shù),∴,∴,即,∴在上是減函數(shù),∴,即,∴,∴當(dāng)時(shí),.∵,∴.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值與最值,利用導(dǎo)數(shù)證明不等式,考查了推理能力與計(jì)算能力,屬于難題.20、(1);(2)1.【解析】

(1)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(2),,由(1)通過(guò)計(jì)算得到,即最大值為1.【詳解】(1)將曲線C的參數(shù)方程化為普通方程為,即;再將,,代入上式,得,故曲線C的極坐標(biāo)方程為,顯然直線l與曲線C相交的兩點(diǎn)中,必有一個(gè)為原點(diǎn)O,不妨設(shè)O與A重合,即.(2)不妨設(shè),,則面積為當(dāng),即取時(shí),.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,三角形面積的最值問(wèn)題,是一道容易題.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論